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l \, ABSTRACT
Ul This | develops same of work of Foulis, Randall, Aerts, and Piron
in the 1ds of empirical s and logic fraom an algebraic
h o point of . More specifically, it begins with three axioms of what is
= called a "subtraction algebra,” and generates various theorems associated

with properties which are useful in empirical science.
)

.~ a tool devised by Foulis and Randall in their study. We define it-as a
-4~ "dominated, atomic, semi-Boolean algebra™ which satisfies an additional
condition called ™condition M.™ Several properties of the marmual are dis-
cussed, and different types of manuals are given: classical semi-classical
'T_and mn-cla[;’ssfical. . ~
~We defire operational complements, operational ivity
and tests, before moving on to define a logic, and how it is derived from a
manual. Properties of the logic are discussed, including a subtraction
operation, a partial order, and an ortho camplement.

) S—
After a foundation is established, it moves on to define the term’éamal,""’ -

, atoms, events,

Next, a camputer program is presented.
Boolean algebra and decide if the

Its purpose is to take a finite semi-

algebra is a mamual. This is followed by a

g

brief non-classical probabilistic discussion, which includes topices such as

s - "Wright Triangle," and the

weights, pure states, and dispersion-free states. ,

P

P

L2

Aerts' and Piron's work with properties, states, and tions is briefly

discussed before on to several examples, some O ttauarisinﬁfran

navigation problems. The examples include the "hook," the "'square,” the
ee algebra.™ BEmpirical techniques are

vt > demonstrated on these les. The examples comprise the bulk of this

paper.
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INTRODUCTION

What began as a project designed to examine the present formal mathe-
matical structure for quantum mechanics has turned out to be more of

an examination of empirical logic, the science of interpreting outcomes
of physical experiments. This is certainly a natural metamorphosis,
since empirical logic enables one to interpret quantum mechanical results
on a most fundamental level, allowing one to explore the interrelation-
ship of outcomes of physical experiments without the constraints of some
dominating mathematical structure.

‘j What makes quantum mechanics an important area to study using empirical
" techniques is that quantum theory is so accurate -- it has been able to
fg predict results of experiments to a high degree of accuracy. It is in-
< teresting to study quantum physics because the results are not the ones
!' that an individual indoctrinated only in classical physics would expect
=) to receive.

fS In classical physics, one deals in general with macroscopic bodies.
: These bodies exhibit properties which are natural to us, due to the fact 1

that we observe classical systems in action every day. For example, we

get a feel for the laws of conservation of momentum and conservation of

energy every time we play a game of tennis. We can also identify things
such as time, mass, position, speed, acceleration, and even energy every
time we go for a ride in a car.

But when we discuss things in the realm of quantum physics, we are talking

about what occurs on a microscopic level. We may deal with atoms, or

even parts of atoms like electrons, protons, neutrons, or any one of the

other particles discovered and added to the “particle zoo" collection.

On this level, our conception of what is natural falls apart. }

For example, referring back to the car example, while driving down the
highway it would seem perfectly natural to identify both our position

and momentum (in classical physics, the product of mass and velocity) :
simultaneously. All we have to do is note our position while glancing

at the speedometer. However, in quantum physics, Heisenberg's Uncertainty ;
Principle tells us that position and momentum cannot both be measured 4
simultaneously with a high degree of accuracy. This inaccuracy is not :
due to the measuring techniques, but fs due to the properties which are
being measured.

PO S e |

We can measure either position or momentum, theoretically, to find the

precise value for one or the other. But there is no universal test, no .
omnipotent test capable of reading both values precisely. Many times in }
areas outside of quantum physics, one finds instances in which an omni-

potent test is missing.

Codons 4

In the chapter on examples, for instance, the reader will find that often
in navigation a single lookout will not be able to observe 360 degrees
around the ship. Thus, the captain must rely on reports from several

lookouts, each with a limited field of vision. 1In this paper, we present !
different techniques for dealing with cases where there is no universal
test.
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Another example of a case in quantum physics where one gets results dif-
ferent from what one would expect in a classical situation comes in a
variation of the Stern-Gerlach experiment. In this experiment one passes
a particle through a magnetic field oriented along a given axis. The
particle will deflect a given amount either up or down, depending upon
the spin. For simplicity's sake, let us restrict ourselves to spin state
+1/2 and -1/2. We will call +1/2 "spin up", and -1/2 “spin down."

Let us first pass the particle through an apparatus oriented in a given
axis. We will call it the x-axis. Let us assume the particle is spin

up. Let us now take the particle and pass it through another apparatus
oriented in a direction rotated 90 degrees from the x—-axis. We will call
this the y-axis. Since the orientation is different, we could get either
spin up or spin down. Again, let us assume that it is spin up. If we
pass it through another apparatus oriented in the x-direction, we would
expect that it would be spin up, since our apparati are set up simply

as measuring devices. However, as it turns out, the particle could either
be spin up or spin down, a totally non-classical result!

One may ask, "Why do we want to change or challenge a theory which would
predict that unexpected outcome to the variation of the Stern~Gerlach
experiment?" The answer is simply that we do not necesssarily want to
change the theory, but be able to explain it from a rigorous mathematical
approach. For throughout the evolution of quantum physics, challenges
have been made to the propriety of many assumptions.

In the )930's, Birkhoff and Von Neumann proposed that quantum theory
should use orthomomlar lattice theory along with Hilbert spaces, which

are essentially infinite dimensional inner preoduct spaces. Later, others
suggested that quantum theory need not be based on Hilbert spaces at all.
They argue that Hilbert spaces were used in the beginning since they were
the only infinite dimensional structures developed at the tfme. In 1956,
Mackey attempted to set down the axioms of quantum logics, but as of today,
the axioms are still incomplete.

The reader can see, then, that there are many unanswered questions in
terms of a rigorous mathematical development of quantum physics. Quantum
logicains, empirical scientists concentrating in quantum physics, attempt
to reexamine a field which was first developed from a pragmatic view-
point, and develop it from a logical viewpoint.

That is why we turn to examine logic., The first formalization of logic
took place when George Boole formalized symbolic logic, in which he
established an algebra of logic. Many are familiar with results of
Boole's work, for all of these results contain a distributive property,
a feature which again is natural to us, for we can observe it in the
real world.

Huntington expanded on Boole's work,and as a result, postulated axioms
for Boolean algebras. In 1936, Stone went one step further to demonstrate
the relationship between Boolean algebras and algebras of sets..

In 1960, Kleindorfer and Abbott, working at the Naval Academy, investi-
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gated the implication connective in a formal logic. Since then Trident

- scholars and Trident-like scholars have built on their work and developed
implication algebras. These include Academy graduates such as Pilling,
Kelsy, Heard, and Kimble. Implication algebras are essentially subtrac-
tion algebras, except the symbology and order of writing the variables
are different. The reader will find in Chapters 1 and 2 that subtraction
algebras are important in our development of empirical science. This
importance is due to their relationship to semi-Boolean algebras, which
form the main structure in the development of empirical science by the
Foulis-Randall school.

Foulis and Randall have asserted that empirical sciemnce:zhust arise from
" physical observables -—- results of tests. They also believe that empir-
S ical science should be free of dependence on explanations of physical
o events, and that each test should admit "the Boilean notions of con-
h junction, disjunction, negation, and so forth.""  This axiom, then, ex-
B plains why semi-Boolean algebras are soc important.

O A large portion of this paper follows the work of Foulis and Randall, and
S certainly none of the work violates the axioms just stated. This paper
is se€ up in such a way that the theory and applications are separated:
the first six chapters are theoretical, and Chapter 7 is one of examples
and explanations.

Chapter 1 18 a chapter which estabiishes various properties of subtraction
algebras. Some of this work is similar to work previously done by Naval
Academy midshipmen.

Chapter 2 is one which establishes the equivalence of subtraction alge-
‘bras and semi-Boolean algebras. It goes on to discuss a special type

of semi-Boolean algebra called a manual, which Foulis and Randall designed
as a tool in empirical analysis. The term "manual" comes from describing
a manual of instructions which tells what tests may be performed, and
what outcomes to these tests will be allowed.

Many other terms in this chapter, although rigorously defined mathematic-
ally, may lack motivation. An "atom" or "outcome" is simply an outcome
to a test. Make a test, get an outcome. The idea i{s that an atom 1is

an event which cannot be further decomposed into simpler sub-events. A
"test" or "operation" is simply what it says. And in practice, one writes
a test a¢ the set of outcomes allowed as a result of performing.that test.
An "event" is something that happened as a result of a test, and is made
up of legal outcomes to that test. That is, an event is any set of out-
comes resulting from a single test. Hence, each outcome is itself an
event. At the other extreme, a test is itself a maximal event, the set
of all possible outcomes of some fixed test.

An "operational complement" is simply a complement to an event with respect

1‘!'oulis and Randall, "What are Quantum Logics, and what ought they
to be?", from the Proceedings of the Workshop on Quantum Logic, Ettore
Majorana Centre for Scientific Culture, Ettore, Sicily, Dec. 2-9, 1979,

pP. 9-10.
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to the operation in which it is contained. Since a single event may oc-
cur as a result of distinct tests, it is possible for distinct events

to to be operational complements of a single event, taken with respect

to differnt tests. Hence, it is natural to call two events "operationally
perspective'" if they share a common operational complement. Thus, if one
event occurs, its operational complement will non-occur, so that in turn
an operationally perspective event will occur. In this sense, operation-
ally perspective means that one event is essentially identical in the
physical world to another event, regardless of the operations in which
either is contained.

An event is said to "occur" if when a test is perfomed, the event results
with a probability of 1. On the other hand, an event is said to "non-
occur" if when a test is performed, the probability of the event occur-
ring is 0. So, the reader may see now that these terms are motivated

by the physical world, and yet will note in this chapter that they are
only defined from a mathematicianfs perspective.

One further note from this chapter is that "DASBAM" is simply shorthand
notation for dominated, atomic, semi-Boolean algebra satisfying condition
M. Dominated, in common terms, means that there is a set of maximal
elements which are exactly the tests. Atomic means that there is a set
of atoms (outcomes). Sometimes we talk about a "DASBA" instead of a
"DASBAM." The reader can probably surmise its meaning.

In Chapter 3 we discuss logics. Logics, very simply, are manuals with

op pairs fused together -- considered as a single result, They are called
logics since we can show that in a manual op is an equivalence relation,
and as a result, the logic is comprised of equivalence classes.

In Chapter 4, we look at a particular case of Stone's Representation
Theorem, which allows us to view the manuals as either Boolean algebras
within each test, or as algebras of sets, This also allows us the
freedom of notation necessary in constructing a computer program which
will check condition M. This program is useful because it saves much
tedium in verifying that some large semi-Boolean algebras are manuals.

Chapter 5 suggests another use of the computer in empirical science.
After defining "weights" or probabilities on a manual, we seek to find
all allowable states. Through a linear programming technique, we can
find the extreme points of the set of allowable states. This technique
is easily adaptable to the computer.

Finally, in the last chapter of theory, Chapter 6, we switch momentarily
from the Foulis-Randall school to examine some of the work of Aerts and
Piron of the Institute of Theoretical Physics in Geneva, Switzerland.
Though initially their work will seem very different, we will see in the
examples that their work is actually very closely related to the work of
Foulis and Randall.

In the last chapter, we put together several examples to illustrate the
concepts discussed in the first six chapters. Some of these examples
deal with navigation problems, in which several lookouts are stationed
in such a way that not one can see in an entire 360 degree field of view.




X This is just one possible application of empirical science in a tradi-
-y tionally classical problem.

Many other areas appear to be fertile for application of empirical science.
Due to the time constraints, though, we have limited the development to
navigation problems. But one point that needs to be made is that though
empirical science has been developed primarily for interpreting quantum
physics, in this paper we apply it to problems encountered outside this
realm.

The reader is challenged while reading this paper to consider possible
applications to a field of study of interest to himself,




CHAPTER 1:

Subtraction Algebras

Perhaps the best way to begin this discussion of empirical science
is to start with the "machinery" - the foundations which allow us to be
certain of the mathematical correctness of our methods. Most fundamental
of the machinery is a background in subtraction algebra."’l So, this is
where the discussion begins.

Defn. 1.1 A subtraction algebra is a set S with an operation "\" 3 ¥ x,y,z ¢ S,

Defn. 1.2
Thm. 1.4

Pf,

Thm. 1.5

ﬁ.

Defn. 1.3

the following three axioms hold: -

S1) =x~(y\x) = x
$2) x~(xvy) = y~(y\x)
$3) (zzyNx = (zxx)y

X, ¥ €8S, (X\yhy = x\y

@)y = (xvy)s(y(xvy)) by S1
= X\y by S1

X, Y £ S, xx = (y\x)\(y\x)

xx = (XNFWx))\ (x\(y\x)) Dby S1
xN(xN(Nx)))N(vx) by S3

(G x)N ((Nx)Nx) )N (y\x) by S2
((yax)n (" x))N(y\x) by Thm. 1.1
(y x)~(y~x) by Thm. 1.1

X, YES, XX = y\y

x\x = (ysx)»(yvx) by Thm. 1.2

(yn (¥ x))N(y\(y\x)) by Thm. 1.2
= (xx(@y))N (xn(x\y)) by S2

= (x\y)\(x\y) by Thm. 1.2

= y\y by Thm. 1.2

JoeS 3VxeS, xnx =0

VxeS, x0=xand o~x = 0

x~0 ® x\(x\x) by Defn. 1.2
= x by S1

o x = ox(x~0) by first part of Thm. 1.4
= o0 by S1

Vx, y € 8, (xxy)~(yx) = x°y

(X9 (yax) = (x~(y~x))Ny by S3
= XN\y by S1

Vx, ye S, x¢gy iff xxy = o

2 4,28




.............

Defn. 1.4

Thm. 1.8

Pf.

-?i.

Thm. 1.10

Pf.

Thm. 1.11

Pf.

——

Thm. 1.12

E.

If a, x e S, asxx = 0, Xna = x, thena = o

a = a~o by Thm. 1.4
= an(avx) = x\(x\a) by S2
= X\X

o by Defn. 1.2

V x, ye8S then (xzy)\x = o

(xsyhx = (x\x)\y by S3
= o\y by Defn. 1.2
= 0 by Thm. 1.4

Vx, y € S, XAy = xn(x\y). This is pronounced
Vi, ye S, x <y 1ff xay = x

Let x <y. Then x A y = x~(xny) by Defn. 1.4.

Thus, XAy = x\(X\y) = xv0 = X

let x Ay = x. Then x~(x\y) = x by Defn. 1.4.
X\y = o. By Defn. 1.3, x < y. Therefore,
1iff x~\y = o.

ysx = o implies that Vz € S, (z:x)\(z\y) = o
Let yzx = 0, z € S. (z2:x)\ (2°y) = (z (2 vy )vx
= (yv(y\2))\x
= (yyxr (yv2)
= o\v(yvsz) = o
Vx, ye8, then xny = ywx implies that x = y,
x = x\(y\x) by S1
= x\(xvy) = y\(y\x) by S2
= y\(x\y) = y by S1

"<" is a partial order.

(1) We will show that x < x. x < x iff x\x
Defn. 1.2.

"X meet y."

x\y = o by Defn. 1.3.

By Theorems 1.6 and 1.7,
x<yiff xAay=x

by S3
by S2
by S3
by Thm. 1.4

= o, which is true by

(11) Next we will show that x <y, ¥y < x implies that x = y.

Recall that x < y, y < x means that x\y
Defn. 1.3. Thm. 1.10 proves that x = y.

(111) Finally, we need to show that x < y and

= 0 = y\.x by

¥y < z implies that

X < 2. y < z implies that o = x\y > x+\z by Thm. 1.8.
xsz > o by Thm. 1.4, which actually says that VxeS, x>o.
Therefore, o < x\z < o, which by part (ii) above implies

that xvz = o, By Defn. 1.3, x < z.
z <x 1ff Ay e S 3z = xvy
Let z < x. XxX~(x\z) = 2~(z:x) by S2

zv0 by Defn. 1.3
2 by Thm. 1.4

10




Let z = x\y for some y ¢ S. Then z = x\y < x by Thm. 1.7.
Thm. 1.13 xv(x\(x\y)) = x\y x, ye S

Pf. xnv(xnv(xvy)) = (xvy) N ((xvy)vX) by S2
= (x7((x y)v))\y by S3
= x\y by Thm. 1.7.

Thm. 1.14 xay is the greatest lower bound of x and y with respect to <.

Pf, Let z be a lower bound for x and y. Show z < xay. < < x implies
that z\x = 0, and x\(x\z) = z. 2z < y implies that z\y = o, and
y\(y\z) = z,

z < xay 1iff z\(xay) = o. 2z (xay) = z~(x\(x\y)) by Defn. 1l.4.
(xn(x22)) N (xv(xvy)) by S1
(x\(x v (x\y)))V(x\2) by S3
(x y)N (x72) by Thm. 1.13
(xv(xrz))\y by S3
Z\y = 0

Therefore, z < x Ay, V2 <X, y. X Ay is the greatest lower
bound for x and y.

Thm, 1,15 xuy = x 1ff x A y = 0 1ff yvx = y

Pf. Let x\y = x. Then x\(Xx\y) = 0 = x A y by Definitions 1.3 and 1.4,
let xAy=0., Then x Ay = 0 = yv(y\x), again by Definitions
1.3 and 1.4. Then since y > yvx >y, y = y\x. Let y\x = y.
Then o = ys(y2x) = x\(x\y) by S2, which implies that x <xy < x.
Therefore x\y = x.

Thm. 1.16 (OMS - orthomodular law for subtraction) ¥ x, Yy, a8 3x<y<a,
then x = ys(avx)

(y\(y+a))v(ax) by S2
(ar (any))s (avx) by S2
(ax(axx))s (any) by S3
(x~(x+a))~(avy) by S2
x\(a\y)

Pf. y-(awx)

x < y implies that axx > a\y, by Thm. 1.9, Using the same theorem,
x = xv(a x) < x\(avy)
Since x x\(a\y) < x, x = x\(avy) = y\(a\x)

Thm. 1.17 For z < x and 2, x € S, then z\(y\x) = z.

Pf. z < x implies that y\z > y\x, which in turn implies that
z = z:(y\2) < zn(y\x) < z.
Therefore, z = z\(y\x)

Thm. 1.18 For z < x and 2z, x € S, then (y\z)\x = y\x

Pf. (ys2z)sx = (yvx)vz by 83, which says that (yzz)\x < y\x.
We need to. show that y\x < (y\z)wx. (YN ((yrz)sx) = (P ((Fax)r 2)
= z\(z\(y\x)) by S3 and S2.

= z\z by Thm. 1.17
= 0. Therefore, (y\z)\x = y\x.

11
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Thm. 1.19

Defn. 1.5

Thm., 1.22

Pf.

Let 2 <X <Yy, X, ¥, 2 € S. Then (ys2)»(x\2) = y\x.

(yaz)s (xn2) = (ya(xNz)) 2z by S§3 .
= (yrn(xx(x\(y\2))))\z by Thm. 1.16
= (y ((3+2)r ((yxzrx)))\z by S2
= (yn(("2)\(yvx)))vz by Thm. 1.18
= (ynz)N((n2)N(y X)) by S3
= (yaz)\(yrx) by Defn. 1.4

yx by Thm. 1.7.

If x < a, we define the relative complement of x with respect

1
to a, xa = azX,

As a result of this definition, Thm. 1.13 can now be read
Xt = ((x.l.) 1) 1
a a’a’a
(compatibility) x < y < a implies that x; - x; AY.

x; Ay = (axx) Ay = yv(ys(asx)) = yax by Thm, 1.16.

= xl.
Another property we would expect of the relative complement is
that the meet of x and its relative complement would be o.

1
XAX =0
a

X A x: = x A (avx) = xv(xv(avx)) = x\x = o

Let x, y<e, ) X, ¥, ecS. We define x vy = e\((evx) (y'x)).
x v y is pronounced "% join y."

Note that both x and y must be less than a single element in the
set S in order for the join to exist. In general, the join of
two arbitrary elements does not exist.

If 3ec¢ S 3x, y <e, then x vy is an upper bound for x and y.

If x v y is an upper bound for x and y, then x, y < xv y. By

Theorem 1.8, x <x Vv y

iffxa(xvy)=x. xAXvVvY =x A (en((ex) (y\x)))

(er((enx) (y3x))) s ((ex((enx)\(y\x))\x)
by Defn. 1.4

(e~ ((exx)~ (¥ x)))n((enx)~ ((exx)\ (y1X)))
by S3

ex(e\x) by Thm. 1.19

x by Defn. 1.4 and the assumption
that x < e

Thus, we have shown x < x v y. We must showy < x v y.

But note the following:

(exx)a(evy) = (esx)s((evx)s(e\y)) by Defn. 1.4
e (evx)\((ev(evy))\x) by S3
= (esx)s (yvx)

12
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But (esx)a(evy) = (esy):((evy)~ (enx)) which, using the above
procedures is equal to (esy)\(x\y). Therefore,
1 n ya(ex((exy)r(xvy))) = ya(xvy) = y.

‘Thm. 1.23 x v y is the least upper bound for x and y, if x v y exists.

Pf. Suppose z £ S 1is an upper bound for x and y. We need to show
that x v y < z. That is, we need to show that (xv yhz = o.
(xv y)hz = (ex((exx)\(yx)))»z by Defn. 1.6
m = (e~z)~((e x)~(y x)) by 83
‘ = (exz)\((esx)Aa(ervy)) by the note in the proof of
the preceeding theorem.

One of the properties of upper bound is that x, y < z. This
implies that e\x, e\y > e\xz. Therefore, (exx)A(e\y) > ez,
which implies that (e~z)\((esx)a(esy)) = o. Therefore,

- xvy<z VYzeS 3x,y=< z.

The following sets of theorems are used to demonstrate that
o (exx)\(y\x) = (exx)»y, but are useful theorems in themselves.

& Thm. 1.24 V x, y, 2z € S, (2xy)In(z2:x) = (xny) \(x\2)
Pf. (zay)s(2znx) = (z~(2vx))\y by 83
= (x\(x\z))\y by S2
= (xny)v(x2) by S3
l : We will now use Thm. 1.24 to prove the following theorem.
Thm. 1.25 V %, y, z € S (zxy)vx = (znx)\ ("X)
Pf. First, we will show that (2 y)x < (2vx)\ (y\X)

((Zv )N ((23x) M(yx)) = ((ZvxR )~ ((2vx)\ (y7x)) by S3
((zxx) ((2ax)N(y\x)))\y by 83

,
% ]
[}

= ((y»x)s ((yvx)N(2nx)))N\y by S2

= ((yvx s ((yax)V(2ax)) by S3
- = ox ((yax)\ (23x)) by Thm. 1.7
: =0 by Thm. 1.4

Now we will show that (2:x)\(yx) < (z\y)\x.
iy ((Z~x)N (Pax))s ((2vy)avx) = ((28x)2((23x)~y))~(y~x) by 83
- a (((2vx) x)v((z x)\y))~(y«x) by Thm. 1.1
= ((ynx)s(yn(zx)))N (yrx) by S5
= 0 by Thm. 1.7

w Thm. 1.26 VY x, y, z € S z:(zv(ywx)) = (27 (2v7))vx

Pf. 2a(z\(y~x)) = (yx)\((y«x)v2) by S2
= (yax)\ ((ysz)sx) by S3

= (ya (Y Z2)\X by Thm. 1.25
= (zx(z2ay)) v x by S2
"‘ Thm. 1.27 (Isotone) x <y ® X 2 < y\2
: 13




Thm. 1.28

Pf.
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(x~z)\(ys2z) = (xaxyz by Thm. 1.25
= O\Z since x\y = o
- 00

Therefore, x\z < y-\z.

If x v y exists, x, y < e, then x v y = ex((exx)\y).
By Defn. 1.6, x v y 5 e~((exx)~(y\x)). By Thm. 1.25,
X vy = es((enxhy).

The above definitions and theorems were presented so that we
can prove theorems relating subtraction algebras to structures
that we wish to study. This will be dealt with in the next
chapter.
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CHAPTER 2: Manuals

ll One structure which is extremely useful in the field of empirical

science is the semi-Boolean algebra. Thus, in this chapter we will prove
the equivalence of subtraction algebras and semi-Boolean algebras. After
o this is done, we will go on and define a manual, which is a special semi-
. Boolean algebra which Foulis and Randall first defined in their search for
a mathematical structure. Finally, we will prove a few theorems regarding
which semi-Boolean structures are manuals, and which are not.

Defn. 2.1 A Boolean algebra is a set B with a partial order, closed under
greatest lower bound (A ) and least upper bound (Vv ), with a
o smallest element (o) and a greatest element (1). Each element
o has its own relative complement with respect to 1 (known as its
complement) which lies in set B. In addition, under V and A ,
» set B must satisfy these associative, commutative, idempotent,
B absorptive, distributive, and DeMorgan laws.

Defn. 2.2 A meet semi-lattice is a set with a partial order such that
' meets are uniquely defined for every pair of elements.

1]
*b Defn. 2.3 (a) An ideal I of a'meet semi-lattice is a subset S such that
if x, y € I then

Ej 1) if z <x, thenz el
2) if x, ye I and 1f x v y exists, thenx v y ¢ I.
. (b) A filter F is a subset of a meet semi-lattice such that if
x € F and
1) ifx <z, thenz ¢ F
2) if x, ye F, thenxA y e F.

'll Defn. 2.4 A principal ideal I is an ideal in which 3 x € I such that
i y < x for every x ¢ I.

s Defn. 2.5 A semi-Boolean algebra is a meet semi-lattice in which every
w principal ideal is a Boolean algebra.

Thm. 2.1 A subtraction algebra is a semi-Boolean algebra.

1 Pf. In the previous chapter we showed that the operations of " Vv" and
"A," defined in terms of a subtraction operation, are respectively
@j the least upper bound and the greatest lower bound. We have already
zé defined a partial order. Clearly there is a least element, X\x = o,
and in each principal ideal the greatest element exists by definition.
Each element has its own complement, the relative complement with
respect to the greatest element, as defined in the previous chapter.
Furthermore, the commutative laws (a Ab=bAaaand avb=>bv a),
the associative laws (a A (bac) = (aab)ac and a v (b ve)
-t = (a vb) v ¢), and the idempotent laws (x v x = x = X A X) are
é! satisfied by the properties of the greatest lower bound and least
upper bound. One of the DeMorgan laws follows directly from the
definition of "v " found in the previous chapter: where e is least
upper bound of principal ideal,
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- (x v )L = en(x v 7) = ex(en ((exx)s(y~x)))
N e = ea((evx)N(y x))
= (e~x)~(y~x
a (esx)n((e~(esy))\x)
= (ex)~((evx)~(evy))
= (esx)a(evy)
- ol
(x A7), = (Kgrve)e = (xbvidy = xvy,

We will now prove the distributive laws.

We want to show that xv(y A 2) = (x v y)A(x ¥ z).

Let r = (x v y)a(x vz), Since x <x vy, xVvz, then

x < (xvy)a(x vz)., Note also that y Az <y <xvy

andyo\z<z<xvz. So, again y A z < r. Since x,

yAz<r.xv(y/\z)ét-(xVy)A(sz) Now we need
to show xv(yAz) >r. Lets=xvz. r<s, and 80
IvX < S\X.

Since (s x)~z = 0 = (8~z) X, Wwe have s x = (8~((8vZ) XX =

(s~(8vz))vx = zvx < z. Therefore, r\x < s\x = z\x < z.
Similarly, we can show that r\x <vy. Therefore, r\x <yAz,

and thus (r\x):(yaz) = 0. r=10 = rr((r3x)7(yAz)) =

x v(y A z), by definition of 'v".

Therefore x v (yaz) = (xvy)a(xvz).

- To show the other distributive property, we use the DeMorgan Laws:
25 xalyvez)=xth@g vyt = xivz vt = (xPviyhzt)?t
L

= ((xtv yhat vzt = (x4 et

- (x aptiv(x A gt
= (x Ay)vix Az).

The absorptive laws are simply consequences of the distributive laws.

Now that we have shown that a subtraction algebra is a semi-~Boolean
algebra, we would like to show that a semi-Boolean algebra is a
subtraction algebra.

Thm. 2.2 x\y = (x Ay)'.
Pf. (x A y)' = x\(x A y) = xv(xv(x\y)), which is x\y by Defn. 1.5
and Tha® 1.13.
Thm. 2.3 A semi-Boolean algebra is a subtraction algebra.
Pf. We will show S1, S2, and S3.
(1) xu(yx) = (xA(yx)), = (x4 (y7(x A y))‘
= A AP - ((x A yIatx A NI = o =%

(82) =x~(x\y) = (xA(x A y);); - x;v(x Ay) =ov(xAay) =xAY.
Since x A y is commutative, x\(x y) = y\(y\x)

16
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Defn. 2.6

Defn. 2.7

Defn. 2.8

) ]
(83) (xxy) z = ((x Ay)x’\z)x\y by Thm. 2.2. Note that

]
(xl\y)x = xv(xAy) = x\y. Also, (xsy)Az < x\y < x.
By the compatibility theorem 1.20 in the previous
1 i
chapter, ((x\y)A z)x\y = ((x\y)A z)x A (xvy)

= (VDD A (y)
= ((xay) ¥ (xA2)) A (xAY)y

= ((xay) A (xa y);) v ((xa z):c A(xA y);)
by the distributive law

= o v((x Az);f\(x/\y);) = (x'\z);'\(xny);

Since this is symmetric in y and z, we have (x\y)\z = (x\z)\y.

What we have just demonstrated is that when we are talking about
a semi-Boolean algebra, we can talk about a subtraction algebra,
and vice-verse. This is useful in empirical logic, because the
structures which the Foulis-Randall school uses are special types
of semi-Boolean algebras. We can use some of the properties of
subtraction algebras in dealing with these structures.

Now that the groundwork has been laid in subtraction and semi-
Boolean algebras, we can begin developing the mathematics of
empirical science. Let us, as usual, begin with some definitions.'

A dominating set is a set M such that every x is contained in an
e, @cMand if 3x in the algebra such that e < x then x = e.

An operational complement to an element x is an element y such
that x, y < e ¢ M and esxx = y,. An alternate definition is to say
that xAy=oand x vy = e ¢ M. We write x oc y,

An element x is said to be operationally perspective to another
element if they are operational complements to the same element,
w: that is, x oc w, wWocy, implies that x op y. We can
also say that x op y 1ff e, f e M, x < e, y < £, such that

e\x = f\y,

In the above definition, we call w the center of perspectivity for
x and y.

let ¢, f £ M. Then e~f oc e A f.

esf <e,enf <e. e(e¥) =¢ Af by definition,

Cor. 2.4 (a) e~f op f-e

Thm. 2.5

Pf.

Ifz<enf, 3x, such that e-f < x < e such that x oc z.

Let x = exz. Clearly x = e\z < e. Since z <e nf <e,
x = ez > er(eaf) = erf.

17




The above theorem states each element in the ideal of the
meet of two dominating elements e and f is.a center of
perspectivity for elements in the filters of evf and fae.

Thm. 2.6 If e > x > e\f, then 3z < e Af such that exx = z
Pf. enx <e A f 1ff (enx)v(e A £f) = 0. (evx)v(e A £)

= (evx)s (ev(erf))

Since x > exf, then e\x < ex(enf), which implies
(exx)s (evx) > (exx)\(ex(erf)). Since o > (exx)\ (eaf) > o,
o = (e\x)\(erf) and evx <eAf, - -

Cor. 2.6(a) There exists an element y > fie such that x op y.
Pf. Thm. 2.5 and Thm. 2.6.

Thm, 2,7 ° Operational complements with respect to a single maximal
element (dominating) are unique.

Pf. Assume z,, z, < e, where e z, = e z,. Then ev(erzy)
- e\(e\zz). which implies that z) =eAz; me Az, =2,

Cor. 2.7(a) For each element in the filter generated by the difference e-f
of two maximal elements e and f, there is one and only one
element oc to it in the ideal of e A f and one and only one
element op to it in the filter of fie. Further, these are
bijective relations.

Pf. Thma. 2.5, 2.6, and 2.7.

Thm., 2.8 If x oc y, X, y < e € M, then e\x oc evy.
Pf. ev(evx) = eax = x = evy,

Thm. 2.9 If x op y, then x\y op ysx.

Pf. x op y implies that de, f ¢ M 3Ix < e, y < f and exx = f\y,

This implies that (e x) v (xay) = (fry) v(x A y). We want to

show that x\y oc (exx) v (x A y) oc yyx. But [(evx) v(x A y)] v (x\y)
= (exx)Vx = e, Also [(exx) v (xAay)] A(x\y)] = [(exx) A (x\y)]Vv

[(x A y)A(x~y)] = [(enx) v (xry)]v O < (esx)v x = 0, Therefore,
[(exx) v (xAy)] oc x\y. Similarly for y\x oc [(exx) v (x A y)].

S0 X\y Op y\x. )

Thm. 2.10 If xocy, X, y<e e M, then exx = y.

Pf. If xocy, 3f ¢ M 3 f\x =y, By definition, x, y < £. Let

e\x = z, e z op f\y implies that e (e\z) = f\(fvy). Therefore,
e Az=f Ayorz=y, So then e:x = f\x. x v (ex) = x v(f\x),
and as a result, e = £,

The above theorem shows us that if two elements are oc and are
contained in the same maximal element, then they are oc via
that maximal element.

18
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Defn.

Defn.

Defn. 2

2.10

2.11

W a ——————mw- M e " T Paaars e~ T T T T Y

A meet semi-lattice is dominated if 3 a dominating set.

A meet semi-lattice is atomic if 3 a set Aof atoms in ihe meet
semi~lattice A suth that a ¢ A, x € A, x < a implies that either
X = a or X = 0, and every element, except o contains an atom.

Condition M is satisfied if Vx, y, z2e¢ A 3x o0c y, y op 2z,

Defn.

Defn.

2.13

2.14

then x oc z. It is important in our study cf empirical science
for condition M to be satisfied, because we need this property

to ensure that op is transitive. The need for this will become
more apparent when we look at example problems.

A dominated, atomic, semi-Boolean algebra satisfying condition
M (DASBAM) is a manual.

A test or operation is a maximal element in a manual.

Defn. 2.15

Defn.

2.16

2.17

Defn.

Thm.

2.11

E.

An atom or outcome is an element in the atomic set.

An event is an element of the manual.

From Defn. 2.14, we can see where the term "operational com—
plement" gets its name. It is derived from the fact that they
are complements relative to an operation. "Operationally
perspective" means that two events are the same, regardless

of which operation gives you that interpretation.

We will now go on to describe different types of manuals which
are of interest.

Define a direct product on DASBA's as {(a,b)|a € A, b € B},
where A, B are DASBA's. Let the subtraction be defined as
follows:

(x5 X)N(31037) = (X)\Y.0 XNTH)s Xy, ¥y € Ay Xy, ¥, € B.
The direct product of two manuals is a manual.

The first requirement of a manual is that it be dominated. We
propose that the dominating set be (el, e2) such that e, € Mk,
e, e Mg. Let (xl, x,) € A x B such that (e)5 ez)\(xl. xz) = (0,0),
the "zero" of our new structure. This means that e\ x; =0,

e)x, = 0. Since A and B are dominated, e x; =0 implies that

e = X and e)rx, =0 implies that e = X, Therefore our

dominating set consists of Mk b4 MB.

The next thing we need to show is that we have an atomic set.
We propose that (o, az) and (a1 o), a € AA and a, ¢ AB are

then only atoms. Let (xl, xz) < (o, az). Then (xl, xz)\(o, az)
= (0, 0), which means that X)\0 =0 and X8, = O. This implies
that X, =0 and Xy = 8y, since a, ¢ Ag- And thus (o, 32) € AAxB
We can show similarly that (al. o) ¢ AAxB'
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o Next, we need to show that our structure is a gemi-Boolean
e algebra. We will do this by varifying the axioms of a sub-
traction algebra. Let Xys Yyo 2y @ A, Xyr Ygs 2, € B.

s1) (xl.xz)\((yl.yz)\(xl,xz)) = ((x1~(y1\x1). xz‘(yz‘xz)) = (xl. x2)

52) (xl'xz)‘((‘1’xz)‘(71’72))'(x1‘(‘1‘y1)'xz‘(xz‘yz))'(yl‘(Yl‘xl)’
T8 (5v%0)) = (335370 M ((yy»¥9) N (x4,%,))
s3) ((zl.zz)\(xl.xz))\(yl,yz)-((zlsxl)\yl.(zzxxz)\yz)
= ((Zp Yz, 20y, 0 xy)
= ((zlzz)\(yl.yz))\(xl.xz)

Finally, we need to show that our new structure satisfies
condition M. To do this, we need to explore first the definitions
of oc and op in A" x B, 1let X32¥ye 2 € A, Xy1¥ys2, € B.
(i:’l.xz)oc(yl.yz) implies that 3(e1,e2) € MAxB such that
(el.ez)\(xl,xz)-(yl.yz). This 18 true iff e\ X,) = ¥y» and

e X, = ¥, which fn A and B means x4 oc y, and x, oc y,.

Since op was :defined as two svents which share a common oc, we
can also see that (xl,xz) op (yl.yz) ic¢ x; OB ¥, and Xy OP ¥,.

Thus, it is trivial to show that (xl.xz) oc (yl,yz). (yl,yz) op (zl,zz)
implies that (xl.xz) op (zl'.zz), since X; OP 2;, X, Op 2, in
A and B respectively.

Defn. 2.18 Given a manual A with a principal ideal I(a), let A3 be the

extension of A obtained by adding to A an element xy for each
x ¢ I(a) under the following constraints:

1) if x <y, x, ¥y € I(a), then Xy £Y¥y» X150 ¥p € A8

2) 1if x ¢ I(a), then x < x,

3) 1fx<y, X, yecA, thenx <y in A8 1
4) 1f x, y, z ¢ Ag, then x <y and y < z implies that x < z. i
A% 1g called a ghost of the principal ideal of a in A.

Defn., 2.19 Dacification is ghosting every maximal principal ideal. That ‘
is to say, we ghost each test.

Defn. 2.20 A Dacey manual is a manual in which every maximal element e contains
an atom a_ such that if e, f ¢ M, e ¢ £, then a, # ag, where

a‘, af € A, ae < e, and ‘f.i f.

Thm, 2.12 A dacification of a dominated, atomic, semi-Boolean algebra
(DASBA) is a manual.
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Defn. 2.21

Ghosting tests leaves us with a new dominated, atomic, semi~
Boolean algebra. We must show that the dacification satisfies
condition M. In the dacification, let x, oc w, oc Yy We will
use the subscript D to signify the dacified DA&BA, and the sub-
script A to signify the original DASBA. X; 2 ey €M,

< f MD ey=eva,ec Ma’ a, e AD Similarly, we
define f )

1° 1
a, $ a, and w, < el. f1. Therefore, v, =W That is, v, was

cannot equal w v a_orwyvag,we A, since

1
in the original DASBA, Thus, Xy = XV 8,5 ¥ =Y Véag X, y € A,

Is y, an operational complement to anything but wl? The answer

is no, since a_. is contained in one and only one test, fl'

f

Therefore, condition M is triﬁially satisfied, since w, is the

. 1
only event oc to Y0 and we already have Xq OC Wy.

A classical manual is a manual in which there is only one element

Defn. 2.22

in the dominating set.

A classical manual is simply a Boolean algebra.

A semi-classical DASBA is one in which the intersection of principal

Thm. 2.13

Thm. 2.14

ideals of any two events in the dominating set is 0.

In the lattice drawing, a semi-classical DASBA appears to be two
or more Boolean algebras which meet at O.

A semi-classical DASBA is a manual.

We just need to show the DASBA satisfies condition M. Note that
the only op pairs in the structure are tests, since 0 is the

only element ine A f, e, £ ¢ M. Therefore, proving condition M
is rather trivial, since we only need to look at something of the
following form: O oc e, e op f, which clearly satisfies condition
M because 0 oc f.

’

Any DASBA with one or two tests is a manual .

wWith one test, there are no op pairs, so condition M is vacuously
satisfied. With two tests, if we have x oc y and y op z, then
there exists e, f ¢ M such that e.y = f\z = w, where v < e, f.

y < e, and therefore y X f since 1if it were, y would then be in
the filter of e\f, and the ideal of eAnf. Thus, e.y = x = w, by
Theorem 2.7,

Theorems 2.12, 2.13; and 2.14 simply give us an easy way to
recognize some DASBAs as manuals.
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CHAPTER 3: Logics

This chapter is one which discusses "op logics," or "logics" for short.
Logics exhibit some properties which are useful in empirical science. For
example, in a logic, equivalent events from the manual are identified. That
is to say, if two events are operationally perspective, they share the same
operational complement. So if x oc y, and w occurs (that is, when the test
is performed we are assured of getting w), then x and y non-occur simultaneously.
In this manner, x and y are equivalent, and in fact we will show that op 1is
an equivalence relation in a manual. We will also demonstrate some properties
exhibited by a logic.

Thm. 3.1 "op" 18 an equivalence relation in a manual.
Pf. (1) X op X, since x oc e x for any e ¢ M such that x < e.

(11) x op y implies that y op x by symmetry of Definition 2.8.

(111) Let x op y and y op 2. y op z implies that there exists
a w such that y oc w oc 2. Sinee we are in a manual,
condition M says that x oc w. Since w oc z, x op z.

Defn. 3,1 Let x denote the set of events in the manual such that y € x
iff y op x.

Thus, X is the equivalence class of x and x op y iff x = y.

Defn. 3.2 x < y 1ff for every x, € x there exists y, € y such that X, < ¥p
Thm. 3.2 X1,X9 < ¥ and X3 OP Xx) implies that X = ;2.
Pf. If X)Xy 2 Y there exists an e € M such that X<y < e.
X, oc e\x,y and X op X, implies that e\x, oc x,. This implies
that there exists an f € M such that x, < f and e\x, = f\xz.
Xy v (e\xl) = f and Xy A (e\xl) = 0, x, < e and (e\xl) < e.
Therefore f < e. In a manual, one test cannot be contained in
another, so £ = e. Therefore eX; = e\x,, which implies that
X, = X,.
1 2
This theorem tells us that two events in x do not share the
same y in y, x <y, such that y 1s greater than both of them.
Thm., 3.3 " <" is a partial order in the logic.
Pf. (1) x _<_;, since x ¢ x and x < x.
(1) x <y and y < x says that for every x, € X there exists
vy € ; such that 3 < Yy» and for every ¥, € y there

exists an x, ¢ x such that ¥, < x. In the manual,

X £y Also, y1 £ %X, € X, There exists an e ¢ M

such that X) 2y 2% e But Xy OP X,. By Theorem
3.2, X, =% Therefore x = y.
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Defn. 3.4

Defn. 3.5

Thm. 3.6

Pf.

e T

(111) Let ;_<_ y and ;f_ Zz. Then for every x, € x there exists

1

v, € y such that X, <y,. For thisy, ¢ y, there exists

<
<

z1 € z such that Y1 zl. Therefore, x, < z, for every

1 1

X, € X.
1

Therefore, we have established that the logic is a partially
ordered set. We will use Theorem 3.4 to prove Theorem 3.5.

Llet x vzopyVvzandx z=yAaAz=0, Then x op y.

X vzopy vz implies that there exists e, £ € M such that
xv22e,yvzifandw=e~(xvz)sf\(yvz). w, z<e, f,
which implies that w, z < e f, which in turn shows us that
wvz<eanf, e=wv (xvz)=(wyz)vx and

f=2w v(yvz) = (wviz)v y. Note that (x v 2)Aaw =10 =

(y v 2) A w. By the distributive law, this says that
wWAax)v(waz) =0= (wAvy)v(waz), which says that
WAX=wWAy=wAnz=0. (Wvz)gx=(wnazx)v(zAXx)

=0 vO0O=0. Thus, x oc wWv 2z oc ¥y, and as a result, x op y.

Xopy, u<x,Vv<y, and u op v implies x\u op y » V.

op y implies that there exists an e ¢ M, x < e, and an
€ M, y < f such that e\x = f\y = w, where e = x v w and
=yvw.

u v (xw), where ua(x\u) = 0, e = uv(xvu) v w, wvhere
Aw=0and (x\u) A w =0, since x Aw =0. Similarly,
vv(yw) v w. Therefore, u oc (x~u) v w. Since u op v,
d we are in a manual, v oc (x\u) v w.

gm:# Hh Hh X
] [ ]

Therefore (x~u)v w op (y\v) vw. By Thm. 3.4, x‘u op y\V.

If x < ;, then we define ;\; = y\X.

The reader will note that this definition was motivated by
Thm. 3.5 which says that 1f x < y, Xys Xy € X3 Y15 Yy €Y
<Y and Xy < Yoo then Y~Xp OP YKy If e ¢ M, we will

denote e by writing 1. This makes sense, because all of the
tests are in the same op class, since each is_an operational
complement to 0. The equivalence class of 0, 0, consists only
of the null event, 0.

The orthocomplement of x is 1\x. We denote this as xt

This makes good sense, as it is motivated by Definition 3.4.

X = X

;11 = (1\;)1. 1\x = esx for some e € M such that x < e.

evx' = 1\ ewxx. Since esx <e, 1 ewx =e\(ex) = x.

?3
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We have shown that the op logic has a least element and a
greatest element, the logic has a partial order defined on
it, and it also has a subtraction operation defined for one
element contained in another. Finally, each element has a
unique orthocomplement.

In any case, the main point that should be made about op
logics is that in the logic, events which are essentially
identical in physical interpretation, but different in the
way in which the outcomes are recorded in the manual, are
identified. This is appealing to one's intuition, since

it seems unreasonable for identical occurances in the physical
domain to be recorded as independent events.

Logics are partially ordered sets, but they do not always
form lattices, and even when they do form lattices, they are
not necessarily distributive. Later in Chapter 7, we will
see some examples of logics.




CHAPTER 4: Notation and Computers

Up until this point, we have discussed manuals as semi-Boolean algebras.
We have not really driven home the point that in the applicaton of the
theory, maximal elements in the manual really represent physical exper-
iments. Since this is the case, Stone's Representation Theorem, which
shows that a Boolean algebra is equivalent to an algebra of sets, tells
us that a test can be expressed as the set of its allowable outcomes.

In this sense, then, we can talk of one event being less than another,
or we can say that one event is contained in another.

Later in the chapter, we discuss a computer program which benefits from
this clarification of interpretations. The program itself 1is extremely
useful, in that it allows us to decide when a dominated, atomic, semi-
Boolean algebra is a manual. Previous to this program, all verification
was done by hand.

Defn. 4.1 Ay ={a| =A, a € x where x is an event and A is the

set of atoms in the manual. Ay, is actually- "the set of atoms
contained in x."

Defn. 4.2 M = {e| «M, x € e} where x 1s an event and M is the

set of maximal elements in the manual. M, is actually '"the
set of tests containing x."

Defn. 4.3 Dy = {a | age, ecMy,acA} whafécx 1s an event. 5, 1s spoken
as the "domain of x."

Thm. 4.1 x ¢ y implies that My & My,

Pf. M = {e | eeM, y £ e}. But since x ¢ y, then x £ e for every
e such that y £ e. Hence, Myg M,.

Thm. 4.2 x € y implies that A, S Ay

Pf. k = {a | acA, a € x}. But for every a such that a £x, a% y.
e

refore, % [ Ay

Thm. 4.3 x £y implies that Dys D,.

Pf, This result follows directly from Theorems 4.1 and 4.2.

Thm. 4.4 If ag x\y, a #0, then a € x and a % y.

Pf. Let a & x\Y €« x. Assume a £ y. Then a<€ x Ay. Therefore,
a<c (xy)A(XxAy)=0. This is a contradiction, so a X Y.

(Stone's Representation Theorem) Ax\y = ANy,

atAy.y implies that a £ x\y, which in turn implieg that a £ x
and a ¢ y, by Thm. 4.4. Therefore, a £ Ag and a € ANAy (a £ Ay).

So a € Ay (A\Ay) = A NAy.

?5
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8 Cor: 4.5A Ay y = Ax VA,
Cor. 4.58 Ay .y = Ayx 0 Ay,

: These follow from the fact that a subtraction algebra defines a semi-
Boolean algebra.

Thm. 4.6  MoM, € M.

Pf. Let e € Mx‘"g‘ That is, x ¢ e, yX e. Xy £x < e, and
therefore e Me\y- . -

Thm, 4.7 My ,y =My aM,

Pf. Let e e My, y- Then x v y £ e, which implies that x < e and
Yy ¢ e. Therefore, since e ¢ My and e ¢ My, e eMyn Hy

Let e equMy. Then e ¢ My and e ¢ . This says that x < e
and y « e. This in turn implies that x vy ¢ e, and therefore

e ¢ Mxv"\,.
Thm, 4.8 quMySHx,‘y.
Let e € My v Hy Either x < e or Yy £e. Without loss of
a generality, we can assume that x £ e, Since x A Yyex £e,

then e ¢ My , y

Cor. 4.8A Dx™D, & Dy.y.
h Cor, 4.88 Dx .y = Dgx N Dy.
Cor. 4.8C Dy UDy SDx 5 y.

o= Note that the domains follow the exact same rules as maximals by Stone's
Representation Theorem.

Thm. 4.9 X vy exists iff My N M, ¥ .

Pf. let x v y exist, There exists an e ¢ M such that x v y & e.
X, y4X vy e, and as a result e ¢ My My, Let My n ¢ 0.
This implies that there exists an e€ M such that e ¢ My N M.
Therefore, e € M,, . X,y 4e¢ then implies that x vy %' e,
since we have a Boolean algebra,

Defn. 4.4 Ay‘- {alaEA.any-O,avybe.een}.

Thm. 4.10 Ay‘- Dy~Ay.

P_f_._'Letae ".Weneedtoshowthataebzandat . Butaay=0,
which means that a ¢ y, or a Ay Furthermore, a vy 4e for '
some e € M. Since e € My and a ¢ e, then a € Dy.

Let a € DK\Az Then a € Dy and a € Ay. Hence there exists an
e ¢ M such that a £ e, Therefore, a, y # e, and a vy £ e,

?6




Since a ¢ Ay, aay=0. Thus, a € Ay.

Now that we have completed the development of the notation, we will discuss
what the program, MANUALlL does.

The computer program, MANUALl, was written in order that we might have a
quick, easy method of verifying that a dominated, atomic, semi-Boolean
algebra is a manual. Chapter 2 suggested that in some cases we could
determine this very easily if it met one of several qualifications. For
example, we will have a manual if the DASBA has only one or two tests, or
if it is a dacification of another DASBA. However, in a majority of cases,
it will ndtbe readily apparent if the DASBA is a manual. And if we have

a DASBA with more than a few tests or atoms, checking all possible com—
binations x oc y and y op z can be tedious, if not nearly impossible.
Fortunately, the computer can be taught to do these things very nicely.

A listing of MANUALL is found in the Appendix, along with several sample
runs. It was written in Fortran, though any computer language which had
Boolean operations could have been used. To operate the program, we input
the outcomes of one test into the computer, using alphanumeric symbols.
The program itself can only handle the letters A to Z and the numbers 0 to
9:; though, with modifications could handle any character. The program

is also limited to 36 bits, though, with a little ingenuity, one could
extend this limit.

The alphanumeric representation is immediately converted to a 36 digit
binary representation, and in this representation we do all of the real
work of this program. Since all decimal numbers are stored in binary, we
can take advantage of this feature in generating the power set of the set
of outcomes contained in a test. For example, if there are n atoms in

a test, we take the binary form of the integers 0 to 2n-1, and allow the
corresponding event to contain the atoms that are in the same position

as the 1's. Order:-and position are extremely important at this stage

of the program.

The next thing that the program does is to generate the operational com-
plement of each event with respect to the test. It does this by using
the "exclusive or', the negation of the biconditional, with the test and
the event. At this point, the events have been stored in one table, and
the respective oc in a corresponding position in another table.

Once each test has been input and the two tables have been generated, the
computer searches the oc table for an event which is listed twice.

Their corresponding events are an op pair, and are listed in corresponding
positions in two separate tables.

After this is completed, the program begins to check condition M. It does
this by searching several tables at once. First it checks for an event
inthe oc table equal to an event in one of the op tables. Once we have

a match, it searches the event table for all events identical to the event
in the event column corresponding to the matched event in the oc column.
It does this to check to see if the corresponding event in the event
column 18 oc to the event in the second of the op tables corresponding

to the matched op event. If it is oc, we continue the process. If it is
not, we store the counter-example in three tables, and continue the search
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to find more countér-examples.

The program finally tells us whether or not we have a manual, and gives

us sevral print out options, including an event/oc table and an op pair
table. The program will also compute the "perp" of each event, and check
the "coherence" condition, but these features are not relevant to this paper,
and will not be discussed here.

Before printing is done, the binary representation is converted to the
alphanumeric representation. Since each position of the 36-place con-
version key has a corresponding numerical value equal to 23€-k, where
k 1is the position, we simply use numerical comparison and arithmetic
subtraction to find the desired event in the form which we would re~
cognize.
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CHAPTER 5: Weights and States

In the previous four chapters, we have dealt with algebras, manuals, and
logics. One thing that we have yet to discuss is some type of probability
distribution on the manuals and logics. This is one area in empirical
science which has been developed by many of the leaders in the field.

It is logtoal to discuss probabilities, since in classical manuals, one
is accustomed to discussing the likelihood of various outcomes to a
single experiment. Why, then, should we not discuss these probabilities,
or "weights",on:Wwere¢ than one experiment? There is no reason, and that
is exactly what we will attempt to do.

Defn. 5.1 A weight is a real value w, 0 € w ¢ 1, assigned to an event
in the manual.

Defn. 5.2 If n is the number of atoms in a manual, a state is an n-tuple

assigning weights to all n atoms under the following conditions:
1) The weight of each eveRt is equal to the sum of the
weights of the atoms contained in it
2) The weight of each test is 1

In a very real sense, a weight is equivalent to what we would think it

to be in terms of classical probability theory, formalized originally by
Komolgorov. A state is simply a consistent way of assigning weights so
that the sum of the weights assigned to the outcomes of a given experiment
equals 1. This is because if the experiment were performed alone, classi-
cal theory would not permit this value to exceed 1, but would allow it
only to equal 1.

Defn. 5.3 A pure state is a state which cannot be expressed as a convex

linear combination of any of the other states, That is to say,
it is an extreme point of the convex hull of allowable solutioms.

If we can find every pure state, then we can express all states as convex
combinations of pure states. Thus, it would be good to find these pure
states, so that we will know all about allowable states.

From the constraints which are set down for a state in Defintion 5.2, we
can find extreme point solutions by using techniques borrowed from the
simplex method in linear programming. The rest of the development in
this chapter is taken form Gass's Linear Programming, third edition.® The
theorems will be stated without proof, with only their uses being cited.

Defn. 5.4 A feasible solution to the linear programming problem is an

n-tuple in which each of the components is non-negative, and
is a solution to a linear system of m equations and n unknowns.

In a manual with r tests and n atoms, we have r equations with the con-

straints that the sum of the atoms in each test is equal to 1. In additionm,

we have the constraint that the weight of each of the n atoms lle between
0 and 1. However, we should note that one of the conditions of a feasible
solution is that each component is non-negative, In addition, each set

of atoms in a test sums to 1. Therefore, we do not need the second set

of n constraints, since 0 € w <1 has been satisfied by the first r equa-
tions. Therefore, r = m, and our system of m equations and n unknowns
consists of summing the atoms in each test, so that they are equal to 1.
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Defn. 5.5 A basic solution to a system of lineae- constraints as described
in the previous definition is obtained by setting n-m variables
equal’. to zero, and solving the remaining m x m augmented matrix.
This assumes that the determinant is non-zero.

Thm. 5.1 The set of all feasible solutions to the linear programming
problem is a convex set.

Thm. 5.2 If a set of k £ m vectors P;, . . . , Py can be found that is
linearly independent and such that x3P; + . . . + x P, = Pg
and all x4 2 0, then the point X = (x}, . . . , Xk, 0, « . . , 0)
is an extreme point of the convex set of feasible solutions.
Here X is an n—-dimensional vector whose last n-k elements are O,

Thm. 5.3 Associated with every extreme point of the convex hull of
solutions is a set of m linearly independent vectors from the
given set Py, ., . . , Pyj.

Thm. 5.4 X=(xj, « » « » X3) 18 an extreme point of the convex hull 1ff
the positive x; are coefficients of linearly independent vectors

Py in J%ijj- 0.

Gass summarizes these pertinent theorems by saying that
1) Every basic, feasible Solution corresponds to an extreme point of
the convex hull _
2) Every extreme point of the convex hull of solutions has m line-
arly independent vectors of the given set of n associated with it, l

When we get to the chapter of examples, we will demonstrate how to use
these results in a practical problem, and even suggest how a computer
might be utilized in finding each of the pure states.
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CHAPTER 6: Properties, States, and Questions

After studying logics, manuals, and weight, it became apparent that we
were lacking a means of insight into these systems beyond what we had
already attained, or these systems were simply building blocks —— means

of interpretation -- that were pointing toward some better means of inter-
pretation. Event though the logics and manuals told us much about the
interaction of tests, it seemed that there should be more: though what
that more should have been was difficult to describe. Nevertheless, in
the search for understanding, one simply desired to know more than we did.

At that point, at the recommendation of Foulis and Randall, we took a
look at a doctoral thesis by Aerts entitled The One and the Manyt Aerts
was a student of Constantin Piron, director of the Institute of Theoreti-
cal Physics in Geneva, who was working with Foulis and Randall at the
time, each of them trying to come to terms with the other's work. It
seems that they more or less have been doing the same things, though
similar terms had different meanings. Wat our understanding of Piron'
and Aerts' work in relation to the work of Foulis and Randall is found

in this chapter.

Defn. 6.1 An entity is an object or system on which tests may be per-
. formed.

Defn. 6.2 A question is a means of making a test, the result of which
can be internreted either "ves" or "no."

Defn., 6.3 Question a is said to be stonger than question 8 (g 4 B)
R 1£f£ -wheneyer a is "true", B is "true."

One will find that " " exhibits the properties of a preorder. That is,
(1) a < aand (11) if a € B and B A v, then a < y. One can verify
this simply by following through the definition of "«."

Defn. 6.4 Question o is equivalent to question B (a = B) iff a < B8
and o > B.

As a result of this definition, " «" is a partial order. That is, in
addition to the two conditions satisfied as a preorder, it also now satis-
fies that a € B, B «€ o impiies that a = B.

Defn. 6.5 A property is an equivalence class of questions.

Defn. 6.6 A property a is actual if there exists a question atca such
that a is true. If not, a is said to be potential.

Defn. 6.7 An Aerts' state is the collection of actual properties of an
entity.

Usually we will call an Aerts' state simply a state. This is not to be

confused with the term "state" used in the previous chapter. Usually,
it will be clear from context which state that we:are talking about.
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Defn. 6.8 A product of questions is a set of two or more questions
of which only one is chosen to be tested. This is written
as a+B or llay, where a, B, and ay are questions.

In other words, for a product of questions to be true, whichever question
is chosen to be tested must be true. This does not mean that we must
test each question; rather, if we did test any one of them, it would

be true.

Defn, 6.9 A primitive question is a question which can be tested by
one experimental set up.

Defn. 6.10 A product of properties, a'b, is two properties which can be
tested by a product of questions, a-B, where aca, ficb.

Defn. 6.11 A primitive property a is one such that there exists a prim-
itive question aca.

Now that some of the terms have been defined, we will define a partial
order on the properties, state some results from Aerts' development, and
then discuss how the Aerts development relates to the Foulis-Randall
development.

Defn. 6.12 Let a and b be properties. a =< b iff a<f, where aca, Beb.

Defn. 6.13 a=b 1iff a =< b and b =< a.

"-<" {s a partial order on the properties. Aerts shows later that the
properties form a complete lattice, with the greatest lower bound of
two properties being represented by the product of two properties, and
the least upper bound being defined as in Defn. 6.14.

Defn. 6.14 Let a and b be properties. The least upper bound of a and

b (a b) satisfies the following requirements:
1) a, b < a b
2) a, b =< ¢, where c is a property, implies that a v b -< ¢.

Aerts' primitive properties apparently come from the event lattice. Clearly,
events correspond to primitive properties, since each event can be tested

by one experimental set up. Are:thegse the only primitive properties? The
answer is ''yes", since a manual defines all the basic responses that are
allowed on an entity.

Foulis and Randall have asserted that a property lattice is an inverted
manual filter lattice. Before we discuss this further, it would be wise
to first define a manual filter,

Defn. 6.15 F is a manual filter on a manual if F is non-empty and for
a and b in the manual we have the following:
1) 1if aeF, b -< a, then bEF
2) 1if aeF, a op b, then bEF
3) i1if a, beF and a v b exists, then a A beF,

The assertion is reasonable if one considers the definition of the man-
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ual filter. If event a is assigned a weight of 1, it would be reasonable
to expect that any event greater than a or operationally perspective to

a would also be assigned a weight of 1. In addition, if both a and b are
assigned weights of 1, a¥ b and b ¥ a, and both are in the same test,
then the atoms which are contained in a are summed to 1 and the atoms
contained in b are summed to 1. Unless the atoms in a A b sum to 1, we
have a case where the atoms in a single test sum to a number greater

than 1, a condition which is not allowed. Since a weight of 1 corresponds
to an affirmative response to a question, it is in this way that a filter
set ordering corresponds to a property lattice ordering.

However, the ordering is inverted since if a£b, a, b events, the manual
filter of b is contained in the manual filter of a, but if a is true,
then b is true. So the Foulis-Randall assertion indeed seems reason-
able.

In some of the examples in Chapter 7, we will look at filters and prop-
erties a little more closely.




............................

CHAPTER 7: Examples

This chapter is intended to give the reader a better understanding

of the topics discussed in previous chapters by illustrating some of
those concepts. The material in this chapter is presented in such a way
that one could get a "feel" for what empirical science is attempting

to accomplish, but for a more rigorous approach the reader is referred
to the previous six chapters.

This paper attempts to strike a balance between the theory of empirical
science and the application of this field to the real world. This balance
is important for several reasons. Naturally, without mathematical rigor,
our empirical techniques are worthless. And without applications, em-
pirical science is just another concept which exists only in man's minds.
Fortunately, it seems that many things that one encounters every day can
be better understood through empirical science, though, as was mentioned
before, empirical science has been sought to explain things as uncommon

to most of us as quantum physics.

Empirical science has actually evolved from classical probability theory
which was essentially formalized by Komolgorov in the 1930's. At the
time, Komolgorov was dealing with outcomes of one test or experiment which
was isolated from the rest of the world. If we wanted to test more than
one experiment at the same time, especially if the outcome of one effected
the outcome of another, then we would have a completely different sit-
uation.

In quantum physics, we might ask, '"What is the position?" of a given
particle in a physical system, and then assign a probability function

to the response, but what if we ask at the same time, "What is the momen-
tum?" The Heisenberg Uncertainty Principle tells us that asking the
second question will effect the outcome of the first question. So here
we have an example of what ultimately empirical science is trying to ac-
complish: to be able to consistently explain the relationship between
outcomes of more than one test. Komolgorov's classical probability
theory is unable to deal with circumstances such as this.

Empirical science should be useful in many facets of life., For example,
public opinion polls seem to be quite popular presently. But the real
challenge is to be able to correctly interpret the outcome to these
polls. And the reason that this 13 a challenge is that a poll is really
a series of tests, generally each having just a few outcomes. Under-
standing the relationship between these tests can significantly effect
the interpretation. For example, most people would respond that they are
in favor of religious freedom in the United States, but if they were first
asked if cults, like the one that lead to the Jonestown massacre, should
be prohibited, people might respond differently. The point being, the
Jonestown question would cause people to respond differntly to the re-
ligious freedom question.

What 1f in an election poll people selected candidate A over candidate B
two to one, candidate B over candidate C two to one, and candidate C
over candidate A two to one? How would we interpret this? Empirical
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science strives to understand things like this.

In the Foulis-Randall school, we are concerned with manuals (see Chapter
2). A manual 1is essentially a list of instructions as to what tests

(or operations or experiments) are to be performed, and which are the
allowable outcomes (or atoms). A logic is simply an attempt to tie
together elements of the manual (events) which are equivalent in a very
real sense, without regard for the tests in which the events are con-
tained.

Let us now begin by looking at some examples.

Example 1. We will begin with a very basic example, which we will build
on later to make a more complicated example. Once the reader examines
our mathematical structures, he will find out that a number of different
scenarios can be fit into them. For this example, let us assume that we
have a port lookout aboard a ship, who can make the following reports as
to whether he has sighted a specific buoy which we desire to locate:

1 1f the buoy is located within 2 points (22.5 degrees) to either
side of dead ahead

2 if he does not see the buoy

3 1if the buoy is located within 2 points off the port bow and dead
astern (180 degrees to 337.5 degrees relative)

.12 1f the buoy is definitely not in sector 3

13 1f the buoy has been sighted by the port lookout

23 1f the buoy is definitely not in sector 1

123 if the lookout is looking for the buoy

0 1if the lookout is not on watch

For simplicity's sake, we will call sector 1 "dead ahead", sector 3 "port
quarter”, and sector 13 "port side." Note that the port lookout cannot
see the starboard quarter, perhaps due to the blockage of the superstruc-
ture. A drawing of the situation appears in Figure 1.1.

6 \

Figure 1.1. Schematic drawing of this
example.
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We will represent this manual consisting of one test (123) first by

drawing a Gr eechie diagram. Recall that a manual with one test is

ﬁi called a classical manual, since the sum of the probabilities on the
allowable outcomes is 1.

[ .

| a 3

Figure 1.2. Greechie diagram of
the classical manual in example 1.

A Greechie diagram is a simple way of representing a manual. Each test
is represented by a straight line, and each outcome contained in that
test is represented by a point on that line. A Gr eechie diagram is
simply a shorthand way of describing a manual. It is quick and easy to
draw and use.

However, it goes a long way from describing some more important aspects
of a manual. A better way is to draw this classical manual as a semi-
Boolean algebra, in which case we get the following, more informative
structure, called the event lattice.

2y

ad

O ‘

Figure 1.3. Event lattice of example 1.

The readers who are familiar with algebra will recall that this semi- h
Boolean drawing of the manual is actually an 8-element Boolean structure,
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B,. This is the representation of the power set of a 3-elemeut set.
Rgcall,an n-element set has a 2"-element power set. Finite Boolean
algebras are power sets of a given set. Semi-Boolean algebras are power
sets of one or more sets (or maximal elements. Or, if you will, "tests"
or "operations.) '

Note that in the manual, some elements (or "events") are written above
others with lines connecting them. An upward line indicates that the
lower element 1is contained in the upper element. 1In this manual, there
are three events located directly above 0. These are called "atoms" or
"outcomes", because they are the most fundamental responses to a test,

It would be wise to digress for just a bit to point out that one of the
theorems in Chapter 4 demonstrated that we could write a test as 123,
rather than {1,2,3}, The smallest element as 0, instead of $#3}, and an
ordinary event like {1,2} as 12. This notation has been adopted because
it is simpler and quicker than using set notation.

When observing this manual drawing (event lattice), one may note that
it looks like a cube projected onto a 2-space (the sheet of paber). This
is an important observation, since we can learn a lot from considering
the manual as a 3-element power set in Fuclidean 3-space. For example,
the atoms form three orthogonal vectors which span 3-space. The "join"
(least upper bound) of two atoms is a plane. And if one joins the third
atom to the plane, one gets the entire 3-space, 123. Hence, 12 and 3 are
complements since their span (Join) 1is the whole set, and their intersec-—
tion ("meet" or greatest lower bound) fs 0. Likewise for 13 and 2, 23
and 1, and 123 and 0.

We ca? label the manual using Boolean notation and derive the following
manual.

on

ool

Q00

Figure 1.4. Event lattice using Boalean
notation. '
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In this notation, we fix the position of the atoms (in this case, 1 in
the first column, 2 in the second column, and 3 in the third), and if the
event contains that atom, we write a "1" in the corresponding column.

We write a "0" in that column if it does not contain the atom. Here,
"contain' means that the atom is less than or equal to the event, or

in set notation, the atom is contained in the set.

This notation is useful because most computer languages deal well with

binary values. In fact, the computer has been used in-such a manaer so
that conditions which are tedious to check by hand can be rapidly per-

formed by the computer. See the Appendix for an example of such a pro-
gram.

Recall that in Chapter 2, we proved that the direct product of two man-
uals is a manual. B8 is a direct product of B4 and Bz. B4 in turn is

ol

‘0
o0
Figure 1.5. 84 ande.
a direct product of B, and B,. So from this, we see that B_ =B_xB,xB

2 2 8 "277272°

We have carried our discussion of this classical manual about as far as
we can, without discussing weights and pure states. We can define a
probability or "weight" distribution assuming the probability that

the buoy will pot be spotted is 1/2. Assuming that the buoy may

be anywhere irnfthe 202.5 degree visible range, the probability of event 1
is 1/2x4 compass points/18 compass points = 2/18; and the probability

of event 3 is 1/2 x 14/18 = 7/18. The dmawing of the weights on the event
lattice is found in Figure 1.6.

In a classical system, a pure state or extreme point of the set of weights
ie simply a case in which an outcome has probability 1 and the other out-
comes have probability 0. For example, if the event 2 has probability 1,
then the probability density distribution is as in Figure 1.7. This case
corresponds to the physical situation in which it is known that the buoy
is not in visual range. If the "question' "is the buoy out of range?"

is asked, the answer is "yes" and the physical "entity" consisting of

the ship and the buoy is characterized by the '"property" that the buoy

is not visible from the port side.

The other pure states are the cases where either the buoy is dead ahead
(probability of event 1 is 1, probability of both events 2 and 3 are 0),
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Figure 1.6. A sample state on the
event lattice.

O
Figure 1.7. A pure state.

or the buoy is on the port quarter. If the latter is the case, then the
property of the buoy being on the port quarter (3) is said to be actual.
Otherwise, it is said to be potential.

The weights x,, x,, X,, corresponding to the weights of the events 1, 2,
and 3, respec 1veiy, ;epresent the "state" of the physical situation sat~
isfying the equation

x1+x2+x3-1
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subject to the constraint that x, 0 for 1 1 3. The solution set in 3
variables is represented by poin%s on the plane x. + x, + x, = 1 in the
first octant. The solutions therefore form a triangle which is a convex
set whose extreme points are (1,0,0), (0,1,0), and (0,0,1). The sample
state given in Figure 1.6 is a convex linear combination of these three
pure states. Figure 1.8 is a drawing of the convex solution set.

X,

Figure 1.8. Comvex solution set.

Example 2. The example which we are about to consider is a semi-classical
manual. Recall that a semi-classical manual ig one in which the intetsec-
tion of every pair of tests is 0. One such example would be as follows:

a means the car is red

a* means the car is not red

1, means that the car is either red or not red

b wmeans that it is hot outside

b* means that it is not hot outside

1, means that it is either hot or not hot outside

The Greechie diagram looks like the following:

a o* b b

Figure 2.1. Greechie diagram of a
semi-classical manual.

Note that the diagram looks just like two Gereechie diagrams for a clas-
gical manual. This is because in a semi-clasical manual, the tests are
unrelated. Thus, in the drawing of the manual, we have a semi-Boolean
algebra which appears to be two Ba's attached at 0.

This manual is a dacification of 22. Recall that dacification is a ghost-
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ing of each event in the dominating set (set of tests), ghosting being
the process in which a unique atom is joined with each event contained
in a principal ideal. Z_1is the semi-classical manual which has the
integers 1 through n as Both the atomic set (set of atoms) and the dom~
inating set.

t ]

o

Figure 2.3. ZZ'
The only events which are op in this manual are 1, and 1;. 1If we construct
the "op logic" (called "logic", for short) we tie together equivalent
events in the sense of being equivalent modulo op. The logic looks like

this:
1

(-]
Figure 2.4. A semi-classical logic.

This structure is known as OMgg, the "OM' being derived from orthomodular,
a property which is similar to, but weaker than, the distributive prop-
erty. The orthomodular law says that a v (a*Ab) =b for all a and b
such that as<b. It is not difficult to demonstrate that the distributive
property does not hold on the logic.

Zv(@ab)=a v0 =3, but

GvdaGEvh) =T, vI =1

a a+ Therefore, 3 v (a* AD) #

(av ;5 A (@ v b), and the distributive property does not hold.

Hughes produced an identical structure in his October 1981 issue of
Scientific American.' Instead of heat and car color though, he used spin

up and spin down in the x and y directions. These two quantities, x spin
and y spin, are not compatible observables. That is to say, the accuracy
of the measurement of one effects the accuracy of the measurement of the
other. This is the difficulty in quantum physics which all non-compatible
observables share.
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Example 3. The manual which is about to be examined is the first manual
with which we have dealt that is neither classical nor semi-classical.
It is non-classical, which means that it has more than one test, and has
at least two tests whose intersection is not equal to zero. As was
promised in Example 1, this problem is a more complicated version of the
same problem. Example 4 will even be more complex.

We will keep the test 123 in this manual, with the events designating
exactly the same as in Example 1. In addition, we will add the test 156,
corresponding to adding a starboard lookout t& the watch section. The
meaning of the added events are as follows:

5 1if the buoy 1is located two points off the starboard bow to dead
astern (22.5 degrees to 180 degrees relative, hereafter known
as the starboard quarter)

6 1if the starboard lookout does not see the buoy

15 1if the starboard lookout sees the buoy (known as the starboard
side)

16 if the buoy is not on the starboard quarter

56 if the buoy 1is not dead ahead

156 if the starboard lookout looks for the buoy

The schematic diagram for the manual is as follows:

<) \ ©

Figure 3.1. Twe lookout problem.

In the Greechie diagram one should note that there are two line inter-
secting at a single point. This indicates that the two tests share a
common outcome. Both the Greechie diagram and the event lattice are as

follows:
5

Figure 3.2. G reechie
diagram of two look- S 6
out example.
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Figure 3.3. Event lattice of this example.

The manual can be drawn in a slightly different manner which makes it easier
to identify the op classes.

Figure 3.4. Alternate drawing of the
manual showing dotted oc reflection line
and circled op classes.

As the reader can see in Figure 3.4, the oo classes are circled. 123
op 156 and 23 op 56. 123 and 156 both mean that a test was performed,
and 23 and 56 both mean that the buoy was not dead ahead. So, in a
very real sense, op classes are classes of "equivalent" events.

Note that in this figure, the dotted oc reflection line really acts as
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a line separating an event from its operational complement. For example,
A 12 is directly across the line from its operational complement '3, and 123
h is as far away from the dotted line as its oc, O.

: Wen we connect the circled op pairs in Figure 3.4, we end up with the
. logic in Figure 3.5.
2y

Pigure 3.5. The op logic.

However, if we reconfigure it, we come up with the alternate form of the
logic found in Figure 3.6.

133

Figure 3.6. The alternate representation
of the logic.

This alternate drawing is useful for several reasons. First of all, it
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gives one a sense of orthogonality, as in Example 1. Secondly, one can
see that from this figure, 123 and I56 are simply different coordinate

2 systems for Euclidean 3-space, sharing only the axis 1. Also, 23 and 56
l are representations of two sets of vectors spanning the same 2-space.

Figure 3.7 shows the same 3-space coordinate systems from a different ‘

. perspective. -
A 1
i
-
|
< - |
5 ‘
: |
P G
3
Figure 3.7. Logic in 3-space from a
different perspective.
. When one notes that Euclidean 3-space is really real-valued 3-dimensional |
Hilbert space, one wonders what ramifications this may have when placed ‘
- in the perspective that quantum mechanics was formally derived in terms
o of Hilbert spaces. This will be discussed more after we have looked at

Example 4.

' Chapter 6 was spent looking at a little of the work of Aerts and Pirom.

Their work deals with "questions", "states”, and "properties." What o
we will look at is the oroperty lattice. Recall that a proverty lattice |
is ordered by "-<", which is spoken as "stronger than", where a -< b 1
if whenever a is actual, b is actual. We will construct the filters ‘
of the primitive properties, since it appears that a manual filter lattice

taken form the event lattice is an upside down primitive property lattice,

The order on the filter lattice is set containment.

F(1) = {1,12,13,15,16,123,156}
F(2) = {2,12,23,56,123,156}
o F(3) = {3,13,23,56,123,156}
- F(5) = {5,15,56,23,123,156}
F() = {6,16,56,23,123,156}
F(12) = {12,123,156}
F(13) = {13,123,156}
F(23) = F(56) = {23,56,123,156}
L F(15) = {15,123,156}
E F(16) = {16,123,156}
F(123) = F(156) = {123,156}
F@) = {1,2,3,5,6,12,13,15,16,23,56,123,156,0}
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Figure 3.8. Primitive property lattice.

In this case, the primitive property lattice is the same as the logic,
though by no means will this always occur. Note that if one turned this
structure upside down, one would have the filter lattice. The lattice
in Figure 3.8 has been dubbed "the ghost of OMg", since it is the direct
product of B, and OMg .

Suppose, as Aerts suggests, we allow non-primitive properties. These
are formed by combining two or more primitive properties using "-"
(spoken "and"), which gives us a property which is actual if and only if
any of the primitive questions associated with the primitive properties
connected by the dot, when tested, would also be true.

Aerts suggests an example in his doctoral thesis to explain his meaning.
1f we were to test a plece of wood to see if it floats, we would exvect
that it would. If the test is true , we say it has property a. If we
were to test a plece of wood to see if it burns, again we expect it would.
If the test is positive, we say it has property b. If we want to desig-~
nate for that same piece of wood that it will float and it will burn, we
designate it a*b. If we tested either property, we would find it to be
actual. But what happens if we try to test both properties? If you test
a plece of wood to see if it floats, it will get wet and not burn. If
you test a piece of wood to see if it will burn, it will probably not
float very well. For a°b to be actual, we do not require that a and b
both be tested and be found actual. Clearly, you may test one, and as

a result of that test, effect the second test.

Recalling Hughes' example fom Scientific American concerning spin up
and down in the x and y directions, i1f a particle is spin up x and spin
up ¥, let us call this property c-d, then whenever one is tested, we
should get the expected results. But if we test spin up x, and then
test to see if we have spin up in the y direction, we may find that we
have spin down in the y direction. This is because testing spin in the
x direction effects the spin in . the y. dtrection.
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Getting back to the original goal of Example 3, let us generate the entire
propertyﬁattice by generating the remaining manual filters. Note that

we would not have a filter like F(1+2), since 1 v 2 exists, and 1 A2 = 0,
and so we would just simply generate F(0). Recall that if the join exists,
the meet must also be in the filter.

F(2:5) = {2,5,12,23,56,15,123,156}
F(2-6) = {2,6,12,23,56,16,123,156}
F(3-5) = {3,5,13,23,56,16,123,156}
F(3°6) = {3,6,13,23,56,16,123,156}
F(12-15) = {12,15,123,156}
F(12-16) = {12,16,123,156}
F(13-15) = {13,15,123,156}
F(13-16) = {13,16,123,156}

Our new property lattice looks like the following:

123

o

Figure 3.9. Two lookout property lattice.

It is clear that this lattice is a lot more complex than the primitive
property lattice. Again, if one inverts the lattice we will be left with
the complete manual filter lattice ordered by set containment,
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Example 4. As promised, this example is a more complex version of the
one found in Example ‘3. In this case, we post a new lookout, the aft
lookout, who can see sector 3 and sector 5, but cannot see sector 1.
The “following is a list of interpretations of events which are in this
manual, but not seen in either example 1 or example 3.

4 if the aft lookout cannot see the buoy

34 1if the buoy is not in the starboard quarter
35 1f the aft -lookeout gsees the buoy

45 1if the buoy is not in the port quarter

345 if the aft lookout is looking for the buoy

@ v, @

Figure 4.1. Drawing of the lookouts'
fields of vision. 4

Vhen we draw the Greechie diagram ofthe manual, we get the following: ﬂ

{ o N q
3 -\ 5 ]

Figure 4.2. Greechie diagram of Wright
Triangle.

Because of the Greechie's shape and because of the work of Ron Wright

with this manual, it is called the "Wright Triangle." This manual is ;
interesting for many reasons, which we will soon see.
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Looking at the drawing of the manual in Figure 4.3, note that in the

133 345 1S

~
~

-5

T~

\‘J O

Figure 4.3. Event lattice for the
Wright Triangle.

rows of atoms, 1 is listed twice. This is because the manual wraps around

itself. That is to say, it would be more accurate to draw the manual on
the surface of either a cylinder or a cone.

One may question at this point how we know that this semi-Boolean algebra
is really a manual. There are several ways to verify this. One is to
make use of a computer program entitled "MANUAL1." To use this program,
we enter into the terminal each of the three tests, one at a time. The
computer will take these tests, generate the semi-Boolean algebra, find
the relative complements of each event with respect ot the tests in which
each is contained, search out op's, and then verify that every possible
combination of x oc y, Yy op z, yields x oc z. In this way, we found that
the Wright Triangle is a manual. This program is found in the Appendix.

Another way of verifying that we have a manual is to note that this
manual is a dacification of: semi-classical manual. In Chapter 2, it
was shown that a dacification is always a manual.

A third way of verifying that we have a manual is by checking that all
of our "Z's" are 'crossed." This method was devised at the University
of Massachusetts at Amherst.'” It says that one should write an event
connected with a straight line to an event oc to it on the other side-of
the original line. This new event is connected with all events oc to it
on the first side of the line. If we form a "Z" which is not crossed,
then we do not have a manual.
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Figure 4.4. Semi-classical manual through
which the Wright Triangle was arrived by
means of a dacification.

“Croseed the Z7
- - =

\ i 5 15 Q “htoﬁsl(\!
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N (x ncT oc z)

Figure 4.5, Amherst method of checking for
a manual.

ar S6
oc hine -_.__\./__-__
¥4
|

Figure 4.6. Result of applying Amherst method
to the Wright Triangle,

Now that we have more than settled that the Wright Tfiangle is a manual,
let us construct a logic. W have the following non-trivial op equivalence
classes:

12 op 45, 23 op 56, 34 op 16, and 123 op 345 op 156

If one checks the interpretation of an op pair, for example 12 and 45,
one will note that they are identical. Both 12 and 45 mean that the buoy
is not on the port quarter. This demonstrates the reason for looking

at the logic.

As was mentioned in Chapter 3, the logic may exhibit certain difficulties,

and this logic has more than one. Just like in Example 3, the logic is
not distributive. But an even more significant problem is that the least
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upper bound of 1 and 3?7 One possible candidate is 13, but another pos-
sible least upper bound is 34 = 16. This presents some difficulty in
working with the logic.

U,

P22

\, §

RN

15
v'5
Figure 4.7. The logic.

In Example 3, we were able to represent the logic in Euclidan 3-space.

In this example, we cannot. The inability to represent it in Euclidean
3-space, or a finite Hilbert space of 3 dimensions, may imply several
things about the present formal development of quantum mechanics. Since
quantum mechanics was developed in terms of infinite dimensional Hilb-rt
space, a logic structure such as this which exists in terms of empirical
logic may indicate that the Hilbert space structure limits quantum mech-
anics by not allowing certain systems of tests or certain states. On

the other hand, it may also be reasoned that quantum mechanics, by nature,
will not allow a logic such as this one.

The next thing that we want to look at with respect to this example is
weights. In Chapter 5, we said that a weight is a way of assigning
values between 0 and 1 to each event in such a way that the sum of the
weights of the atoms in each test is 1, and the weight of an event is
equal to the sum of the weights assigned to the atoms which it contains.
From these qualifications, then, we can deduce a system of equations de-
signed to yield solutions to the constraints.

If we allow x to mean "the weight assigned to event n", then we have
the following system of equations:

x1+x2+X3 =]
Xq + X, + Xg =]
xq + x5 + Xg= 1

and 0 = xy %1 for 1 =1 =6
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This system of equations completely describes the set of allowable weights, 1
which when graphed in 6-space forms a convex set. If we could generate
the extreme points in some way, then all of the allowed solutions are
simply convex linear combinations of the extreme points. W will call
the extreme points ''pure states." These pure states are of importance
also because Aerts has asserted that the atoms of the property lattice
correspond to pure states, if the pure states exist. s

By borrowing some theorems from the simplex method of linear programming,
we have found a technique for solving for the pure states, if they exist. [
The reader should refer to Chapter 5 for the theorems. :

One of the qualifications of this method is that all varialbles be non-
negative. W already have this with O £ x{ for 1 £ 1 €6. 1In addition, i
since each of the weights 1s non-negative, the first three equations al- :
ready require xj € 1 for 1 € 1 € 6. Thus, we have reduced our system

to 3 equations and 6 unknowns, which can be expressed as a 3 x 6 aug- ]
mented matrix such as the following:

117100 0 1
00 1110 1
1000 111

ri_ The technique requires us to set 3 columns in the 3 x 6 unaugmented
o matrix equal to zero. If the remaining 3 x 3 determinant is non-zero,
implying linear independence of the remaining three vectors, one then
- solves the 3 x 3 augmented matrix. If each of the variables in the
!l solution is non-negative, then the solution corresponds to a pure state. i
B If one or more variable is negative, then the solution does not cor-
&3 respond to a pure state. If one sets every possible combination of
;- n - m @Qumber of columns minus number of rows) columns equal to zero, one
. will find all of the pure states. In this case, as mentioned above,

, n-m= 3,

PPN 18]

Proceeding to solve this problem, we get the following: 1

Non-zero columms

1,2,3 (1 1

(=

D

. 001 1 =
o 1001 {0 E

X3 *x3=1, xp =-1 3

O
o'
[ —
oo
]
e

Since x7 is negative, this does not correspond to a pure state.

1,2,4 1101 1o o 1] i
0 01 1{=/0 10 0 x=x4=1,x=0
100 1; 0 0 1 1

[l > =]

Since this solution meets all of the conditions, one pure state

is (xy,X%9,Xq,X;,X5,%g) = (1,0,0 1,0,0). Since here xp = x3 = X5 = Xg,

we nolio%;eg,hgéesto look at an; combinations with the first and fourth i
colums as non-zero columms.

o0 100 o
li - ‘0 1 0 1 9
1 001 1

- 1,2,5 1101 oo
. 0011 =110
N 1011 00 1 1. ;
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Non-zero columns

. xz'x5=l,x1=0

Thus we have another pure state — (0,1,0,0,1,0). Note that we no
longer have to look at 2-5 combinations.

" 1,2,6 10
det 0 0{=0
n 0 1

Therefore, this will not yield a pure state.

- oM

f 1,3,4 We skip this since we already solved for a 1-4
combination.
r .
1,3,5 1101 10-10 1o o 12
0 1 1 1i=:0 11 1, =.0 1 0 1/2.
1011 00 21 00 1 1/2

X] = x3 = x5 = 1/2

» This is non-dispersion free, (1/2,0,1/2,0,1/2,0), though it is clearly
s a pure state. Dispersion free states, states with only 0's ana 1's,
W are associated with classical results. This non-dispersion free
pure state is purely a non-classical result.

o)
1 X3 = Xg = 1, x = 0
1.

1,3,6 1 1 0 i] 1 0
0 1= 0 1
1 o 11 00

-0

So our fourth pure state is (0,0,1,0,0,1). There is no need to look
at 3-6 combinations again. W can skip 1,4,5 and 1,4,6.

1,5,6 1 0 01 1 0 0 1
010 1;,={0 1 0 1 X; = X5 =1, xg = -1
1 111 0 0 1-1

Since we have a negative solution, this does not correspond to a
pure state.

2,3,4 1 10
det ]O 1 1} =20

0 0 0!
W skip 2,3,5; 2,3,6; and 2,4,5.

2,4,6 {1 0 01
0 1 0 1 X) = X, = X = 1l
0 011

-———-

'
v

The fifth solution is (,1,0,1,0,1). W skip 2,5,6.

3,4,5 f1 0 0 11 fi 0 0 1
'1 11 1i=1(0 1 0-1 Xy = x5 = 1, X, = -1
0011, 00 1 1

This does not correspond to a pure state. W skip 3,4,6 and 3,5,6.
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Non-zero columns

4,5,6 0 0 o!
det |[1.1 0/ = 0
o 1 1!

Finally, the process is complete, and we have 5 pure states: (1,0,0,1,0,0),

©,1,0,0,1,0), @©,0,1,0,0,1), (1/2,0,1/2,0,1/2,0), and (0,1,0,1,0,1).
‘F8om these solutioms, all of the weights may be found.

One of the most useful things about this technique is that it is easily
adaptable to the computer, since the entire procedure just demonstrated
used a simple algorithm. As a result, the process can even be made
quicker and easier.

We will now move on to generating the primitive property and property
lattices. We will denote 123 by p, 345 by a and 156 by s. This is done
for the sake of brevity.

F@O) = ithe set of events}

FQ) =11,12,45,13,15,16,34,4,p,a,8}
FQ) = {2,12,45,23,56,p,a,s}

F(@3) = {3,13,23,56,34,16,6,35,p,a,s}
F() = {4,34,16,45,12,p,a,s)

FG) = }5,15,35,45,12,56,23,2,9,8,8}
F®) = {6,16,34,15,23,p,a,s8}

F(23) = F(56) = {23,56,p,a,s}

FQ2) '{13,P,3:3}

F(12) = F(@4S) = {12,45,p,a,s)}

F(@35) = {35,p,a,s}

F(34) = F(6) ={34,16,p,a,s}

F(15) = {15,p,a,s}

F(p) =F(@) =F(@) = {p,a,s}

Figure 4.8. The primitive property lattice.
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We will now construct the entire property lattice.

F(13-15) = {13,35,p,a,s}

F(15-35) = {15,35,p,a,s}

F(13-15) = {13,15,p,a,s}

F(13-15-35) = {13,15,35,p,a,s}

F(13-34) = {13,34,16,p,a,s}

F(35-23) = {35,23,56,p,a,s}

F(15.12) = {15,12,45,p,a,s}

F(2:4°6) = {2,4,5,12,23,34,45,56,16,p,a,s}

And thus we arrive at the property lattice.

Figure 4.9. Property lattice for the
Wright Triangle.

It is proper at this time to note a few things about this property lattice.
First of all, 1 -< 4., This makes sense to us logically since whenever

the buoy is dead ahead, we would expect the aft lookout to report that

he could not see the buoy. But 4 -£ 1, which also makes sense, since the
aft lookout could report not seeing the buoy if the buoy were really not
within visual range of any of the lookouts.

In this manual, 2 -< 5, but in the manual in Example 3, 2 -¢ 5. We need

to find some explanation for this occurance, since our logical reasoning
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tells us that when 2 occurs, 5 should also occur. One way of explaining

this is to say that the manual in Example 3 simply does not have enough

information, or tests, to describe the system. This is somewhat supported “
by the fact that the manual in this example, having one more test, accur- 4
ately describes the relationship between 2 and 5. -

Another explanation is that the manual in Example 3 does not distinguish
between the events 2 and 3, and between the events 5 and 6, when one

looks at the systems of equations which describe the states. So, mathe-
matically, there is no reason to say 2 —< 5, since clearly 3 -4 5, and 1
2 and 3 can, in terms of the system of equations, be interchanged.

S AT

Finally, another possible explanation is that in the property lattice, .\

2 and 2+5 are essentially the same property, since 2:5 means that the i

port lookoutsees notliing and the buoy is on the starboard quarter. If

we allow 2 to be collapsed onto 2-5, to become identicdd occurances, then

we have the desired order in the property lattice of Example 3. q
1

Aerts' has asserted that pure states are identified with the atoms of the
property lattice. For this example, we can see that this assertion is
true. 1 coorresponds to (1,0,0,1,0,0); 3 corresponds to (0,0,1,0,0,1);
5 corresponds to (0,1,0,0,1,0); 2+4-6 corresponds to (0,1,0,1,0,1); and
13+15-35 corresponds to (1/2,0,1/2,0,1/2,0).

For our example, we have difficulty in finding an explanation for the last
pure state. that it seems to say is that no matter which lookout is asked
if he sees the buoy, he will respond that he sees it. It is as if the
captain of the ship turns the boat so that the lookout he asks will auto-
matically see the buoy. This is why this state is referred to as being
non-classical -— in our ordinary experience, we cannot explain this state.

One way at looking at this state is to say that our system of three tests
tells us more about the system ofthe buoy and the lookouts than we need
to know. Perhaps we have no right in trying to apply non-classical
techniques to this classical problem. It is as if this is a state which
knows everything about the system.

One way in which we can deal with this state is to collapse it onto 0.

In turn, 13:35 collapses onto 1, 13-35 collapses onto 3, 1535 collapses
onto 5, 13 collapses onto 13:34, 35 collapses onto 35°56, and 15 collapses
onto 15°15. This structure, then, stongly resembles the primitive prop-
erty lattice, except for the fact that this one has the property 2:4+6,

It is clear that there is much work left to be done in the area of apply-
ing non-classical techniques to classical problems. Not only developing
more examples, but also developing a better understanding ofour results.
Thus far, people like Foulis, Randall, Piron, and Aerts have accomplished
. much in the development ofthe theory of empirical science, but have left
3 open the application of this theory to others. It is hoped that these

- examples suggest some applications, and yet also leave questions in the
.. reader's minds about other applications and other interpretations. i

le 5. Thus far, we have considered four examples of manuals. Perhaps
it would be appropriate to introduce a semi-Boolean algebra which 1s not
a manual. Since we have already proven that a semi-Boolean algebra with 1
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one or two tests is a manual, we will look at a case with three tests.
The Greechie diagram is as follows:

N . .

. l:' -

OA e ®

- Figure 5.1. Greechie diagram of a semi-
Boolean algebra which is not a manual.

In this diagram, the reader will note that this 1is not the typical type

. of Greechie diagram, in that one of the tests, AME, is represented by

@ a curved line. In many diagrams of this type, there is no way of rep-
resenting the manual by straight lines. In addition, when there are
overlaps of more than one atom, the diagrams are a bit unusual, and we
sometimes represent th~ overlaps by parallel lines drawn closely together.

‘then we represent this example in an event lattice diagram, we get the

ABOC
\

~ N

. drawing in Figure 4.2.

Figure 5.2. Event lattice of
this example.
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Though this diagram is not ordered as well as the ones in the previous
examples, this is not the real key to this not being a manual. Clearly,
there are more complicated-looking semi-Bolean diagrams which are man-
uals. But when we search all possible combinations of op's and oc's,
we find that AB oc DE, DE op AB, but clearly AB is not oc to AB. The
same 1is true of C and AB, and C and DE. Therefore, because of these
counter—examples, we do not have a manual.

In terms of the method of 2's demonstrated in Example 4, we get the fol-
lowing drawing.

A3 C

%
N I

oc line - = -
e l
! %Y AB
’ Figure 5.3. Amherst method of checking
a manual by Z's.

Since AB 1s not oc to AB, we c.nnot connect them across the oc line.
b . This may lead one to ask, "Wy 1is cordition M so important?" Since we

are talking about events from an event lattice, without condition M, it

is possible to have the following: AB occurs (is assigned a weight of

1), which tells us that DE non-occurs (weight of 0). This in turn shows
us that C occurs, which implies that AB non-occurs. This contradicts

our original assumption of AB occurring. In empirical science, if we per-
form one test and get a result, we expect that if another test allows that
result, then if we had performed that second test originally, we should
have gotten that same result.

In some cases, we can add tests to a semi-Boolean algebra to make it into
a manual. In this example, we cannot add tests to make it into a manual,
because we will never be able to add a test to make AB oc AB. But in the
next example, we will be able to make it into a manual by adding a test.

Example 6. This example is called the "hook." It gets its name from the
appearance of the Greechie diagram.

X«

A O
Figure 6.1. Greechie diagr-m of the "hook."

Our counter—examples to condition M for this example are A oc B, Bop D,
but A is not oc D. Also, C oc D, C op A, But again, A 18 not oc D. 1In
order to make A oc D, we need to add the test AD.
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Figure 6.2.

Event lattice of the "hook."

B ¢

i
|
i
|
.'

A D
Greechie diagram of the "square."

AD

Figure 6.3.

C.D

O
Figure 6.4. Event lattice of the ''square.”
Vhen we test to see if the new algebra, the "square'", is a manual, we find
out that it is. Therefore, we have demonstrated a case where the addition
of one test made the new algebra into a manual.

Example 7. The purpose of this example is to demonstrate that a manual
can have no states, and yet have many filters or properties. The name
of this manual is the "windowpane" due to the appearance of its Greechie
.diagram.

Since a Greechie diagram represents its tests by straight lines, the tests
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are AKD, EFGH, IJKL, AEI, BFJ, CGK, and DHL. It is not obvious whether
the semi-Boolean algebra satisfies condition M: this 1is clearly not a
dacification, we have more than two tests, and it is not the result of

a direct product of manuals. In this case, it is no easy task for one

to check all possible combinations for condition M. This 1is one in-
stance where a computer program saves much time. The windowpane has been
verified as a manual, by means of the program MANUAL1l, found in the Ap-
pendix.

A 2 & >

“ T .C., H
L—————— » - » .

I J 4 -

Figure 7.1. Greechie diagram of the
windowpane.

Since all of the tests must be assigned a weight of 1, we verify if any
states exist. We have 4 tests in vertical columns, and 3 tests in hor-
izontal rows. Thus, if we sum the weights of the tests in a vertical
direction we get 4, and if we sum them in a horizontal direction we get
3. As a result, we have found that there is no way to assign weights.

However, filters do exist for this manual. For example, if we generate
the filter of A, we get A and all the events which contain it. Also, if
A occurs, then an event such as L could occur; and if both A and L occur,
then the event FG could also occur. So despite not having any weights,
there are many ways of assigning values to events such that every test
contains an atom with non-zero probability. We have given an example

of a manual filter in which the addition of any event would make the
manual filter generate the entire set, called a manual ultrafilter.

Example 8. This example is similar to Examples 1, 3, and 4, in that it
has been applied to a navigational system. Refer to Figure 8.1 to see
the sectors which divide up the lookout's reports.

In this example, we have two lookouts -- one a port lookout and one a
starboard lookout. The port lookout can report 1, 2, 3, 4, 5, or 7
(1f the port lookout does not see the buoy). The starboard lookout
can report 1, 2, 3, 4, 6, or 8 (1f the starboard lookout does not see
the buoy). The resulting Greechie diagram is expressed in Figure 8.2,
Recall that the side by side lines actually represent an over lap in
the Greechie diagram.

Vhen wve draw the event lattice, we get a structure as in Figure 8.3.
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-
) Figure 8.1. Sectors of the lookouts' reports.
o
7 3 | 2 3 <
——————— e - e
' 3 3 5 -3 8
. Figure 8.2. Greechie diagram.

Figure 8.3. Event lattice of 6-sector
' problem.

One may note that this figure appears to be two 6~dimensional hypercubes

i overlapping in a 4-dimensional hypercube. This is a semi-Boolean algebra

N with 112 events. One may note that all of the op pairs can be found within
the filters of p\s and s\p, which are drawn as Bjg's, and are found on the

. ‘
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extreme left and the extreme right of the manual. Drawing the logic by
overlapping these two filters, we get what is known as O . That is,

it represents the direct product of OM, and . But more importantly,
OMge is the free algebra generated by two subspaces of a Hilbert space.
If one picks out the right events in the logic, one can generate all 96
events (subspaces in a Hilbert manual) by intersection, complementation,
subtraction, and spans. It seems then, if we can pick the proper two events,
we could generate every other event by asking combinations of these two
questions. Perhaps this could be useful in the analysis of certain types
of problems which have a similar Greechie diagram, and are constrained
by the number of allowed variables.
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Conclusions

- As was mentioned in the introduction, empirical science was largely brought
l I‘ about as a method of rigorously formalizing quantum physics. In that section,
I we cited several instances in which the outcomes to quantum mechanical experi-
: ments vary significantly from what one would expect to get classically.

b Motivation was given concerning the historical development of not only this
field, but the field of algebras as well.

) In the first six chapters, some areas which are of interest to the empirical
- logician were developed with a certain amount of rigor. We began with the

' axioms of subtraction algebra, from which we derived many theorems pertinent
to later theorems. We defined meets, joins, and relative complements in terms
of this algebra. In addition, we established a constant o and a partial order.

When we moved onto Chapter 2, we proved the equivalence of subtraction algebras
and semi-Boolean algebras. We then defined operational complements and oper-
ational perspectives, from which we set down the condition which makes a semi-
Boolean algebra into a manual. It is this structure in which empirical

.. sclentists are iuterested. From there we defined special kinds of manuals,
b and established conditions under which certain semi-Boolean algebras were

1 assured to be manuals.

In Chapter 3, we demonstrated that op was an equivalence relation, and set
up an order diagram on equivalence classes of events. A partial order was
established, and various theorems of properties on the logic were set down
and proven.

l‘ Chapter 4 accomplished two things. First of all, through a version of Stone's

Representation Theorem, we showed that a semi-Boolean algebra was the equiva-

: lent to an algebra of sets of atoms contained in each event. Secondly, we

= explained a computer program written to generate the entire semi-Boolean
algebra from the tests, and then checked it to see if the manual conditions

' were satisfied.

b SV
et

Weights formed the primary concern in Chapter 5. The chapter began by
defining weights, and then defined states and pure states. Since one can
find all states from all of the pure states, it was useful to have demon-
strated here a technique -~ easily adaptable to the computer - which would
find all of the pure states.

Chapter 6 was taken from Aert's doctoral thesis The One and the Many. He
described and developed many empirical techniques primarily to uses in his
study of quantum physics. After examining his lattices, we found that they
were related to the op logics of Foulis and Randall. We later applied these
property lattices to some of the examples.

e Qo
Lae
2 W

.l

The examples were all found in Chapter 7, the last chapter. Here, we demon-

strated a cross section of semi-Boolean algebras which were representative of

the various properties discussed in the previous chapters. Of special note
- were the four examples related to the problem of navigation in which lookouts
i{ were used who were perhaps unable to see all the way around the ship. With
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many variations on this set-up, we were able to demonstrate how empirical
techniques would be applied to this problem.

The point that needs to be driven home here is that this is simply' one area,
outside of quantum physics, in which techniques originally developed to use
in quantum logic could be applied. Many other areas seem wide open for use
of these techniques. Take for example opinion polls, which have gained popu-
larity in recent years. An opinion poll consists of questions or tests,
usually with finite outcome sets in each test. Perhaps applying empirical
techniques defined in this paper would reveal things about the opinion poll
which will lead to a more accurate interpretation of the results.

The potential for applications, at this point, is unlimited. One simply
needs to be able to envision one's area of interest as a system of tests
with associated outcome sets. As developments in empirical science continue,
interpretation of areas in which empirical techniques have been applied will
increase, and perhaps lead to significant understanding of things previously
hidden.

Empirical science is potentially a great avenue of understanding and inter-
pretation for all sciences, and many areas outside of science.
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ENDNOTES
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Appendix

This Appendix contains the computer program, MANUAL 1, which is
used to verify that the manual condition is satisfied. Pages A-2 through
A-6 has a listing of this Fortran program. Page A-7 has a sample run of
the program for the "Wright Triangle." (See Example 4 in Chapter 7.)
Pages A-8 through A-10 is the result of a sample run of the "windowpane."
(See Example 7 in Chapter 7.) And finally, pages A-11 and A-12 represent
a sample run of Example 5 in Chapter 7, a semi-Boolean algebra which is
not a manual,
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